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Abstract—The rapid growth of traffic and number of simulta-
neously available devices leads to the new challenges in construct-
ing fifth generation wireless networks (5G). To handle with them
various schemes of non-orthogonal multiple access (NOMA) were
proposed. One of these schemes is Sparse Code Multiple Access
(SCMA), which is shown to achieve better link level performance.
In order to support SCMA signal decoding channel estimation
is needed and sparse Bayesian learning framework may be used
to reduce the requirement of pilot overhead. In this paper we
propose a modification of sparse Bayesian learning based channel
estimation algorithm that is shown to achieve better accuracy of
user detection and faster convergence in numerical simulations.

Index Terms—5G; SCMA; channel estimation; sparse Bayesian
learning; active user detection

I. INTRODUCTION

A fifth generation (5G) wireless communication standard,
which expected to be commercially used in 2020, includes
support of very diverse applications and tremendous number
of users as a basic part of IoT concept. It must also support
massive connectivity, achieve spectral efficiency and lower
latency [1]. Unfortunately, newly launched Long Term Evo-
lution Advanced (LTE-A) networks are not efficient enough
to meet all requirements that are imposed to 5G systems,
especially in uplink (UL). To deal with them a new Non-
Orthogonal Multiple Access (NOMA) scheme – Sparse Code
Multiple Access (SCMA) was introduced in [2]. As other
NOMA schemes SCMA brings some controllable interference
to implement overloading at the cost of increased receiver
complexity in order to achieve higher spectral efficiency and
massive connectivity [3]. In SCMA systems incoming data
from different streams are directly mapped to the codewords
from multi-dimensional codebooks. Multiple users select their
codebooks and pilots and then transmit their data in pre-
configured resource blocks without preliminary request pro-
cedures. The main advantage of SCMA over another NOMA
schemes is some potential gain of multi-dimensional constel-
lation shaping [4].

The main problem with coherent signal detection is ne-
cessity of channel estimation, because demodulation of re-
ceived signal is possible only after obtaining channel state
information. In SCMA, this question is being studied unlike
traditional digital telecommunication systems. In [5] blind
active user detection with joint message passing algorithm was
introduced. Unfortunately, it makes an assumption that SCMA
layers share the same time-frequency resource block which

isn’t true in general. The other approaches – compressive
sensing detectors with orthogonal matching pursuit [6] and
compressive sampling matching pursuit [7] suffer from severe
performance loss in case of further decreasing of number of
received pilot resources. This problem arises due to convex
relaxation from l0 minimization to l1 minimization [8].

To handle with these problems and to increase overall
frequency efficiency a robust active UE detector based on
Sparse Bayesian Learning was proposed in [9]. In this article,
we modify this approach and achieve better convergence
rate which is important in case of tremendous number of
simultaneously active users as one of the factors that can
increase total decoding speed and as a result decrease latency.
Our numerical simulation results show a five time increase of
convergence rate in case of 36 potential users with 6 active
users and 20 pilots in one fading block. Our algorithm employs
a modified iterative scheme for approximate Bayesian channel
parameter estimation. This modification was first mentioned
in [10] as the one that shows better convergence results in
machine learning problems.

The rest of this paper is organized as follows. The system
model is presented in Section II. Our modification of SBL de-
tector is presented in Section III. Comparison of different user
detectors based on SBL framework performed by numerical
simulation is presented in Section IV. This paper is concluded
in Section V.

II. SYSTEM MODEL

A. SCMA encoding

An SCMA encoding procedure is defined as mapping
from log2(M) bits to a K-dimensional complex codebook
of size M [2]. In the uplink transmission each user has
its own codebook and its data bits are mapped into K-
dimensional complex codeword with N < K non-zero entries
selected from corresponding codebook. After it these bits are
transmitted through K resource elements (REs) (for exam-
ple Orthogonal Frequency-Division Multiple Access resource
elements). In this case one RE is the resource of one sub-
carrier in Orthogonal Frequency-Division Multiplexing and
multiple overlapped SCMA blocks may fit within assigned
time-frequency resources [11]. In the uplink transmission
scheme with SCMA multiple access is achieved through the
sharing of the same time-frequency resources among SCMA
layers of multiple active users [12].
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Signal from U users that arrived through different channels
after the synchronous level multiplexing can be expressed as
[2]

~y =
U∑
u=1

√
Pudiag( ~hu) ~xu + ~n

where xu = [xu,1, xu,2, ..., xu,K ]T is SCMA codeword trans-
mitted by user u, Pu – power of received signal, ~hu =
[hu,1, hu,2, . . . , hu,K ]T – channel vector of user u, ~n – Gaus-
sian ambient noise and cell-off interference.

B. Channel model
In this article we consider system with allocation of SCMA

codewords from N users into one resource block. We assume
time-invariant channel response within range t1 to t2 and block
Rayleigh fading with size of each block equal to B. Total
amount of fading blocks is Q. Within each fading block we
assign Np REs of pilots to identify different users and Nd REs
to transmit SCMA codewords (B = Np+Nd). An active user
pick its pilot sequence and its corresponding codebook during
SCMA UL access.

In one resource block the received pilot vector ~y can be
expressed as follows:

~y = [P1 P2 . . . PN ]


~c1a1

~c2a2

...
~cNaN

+ ~n

where Pn =


~pn,1 0 . . . 0

0 ~pn,2 . . . 0
...

...
. . .

...
0 0 . . . ~pn,Q

 (1 ≤ n ≤ N )

~cn = [cn1 cn2 . . . cnQ]T

and pn,q–n-th pilot sequence of q-th fading block, an ∈
{0, 1}–n-th pilot sequence activity indicator, cn,q–q-th fading
block channel response of active user who picked n-th pilot-
code, ~n – additive white Gaussian noise.

During transmission we make following additional assump-
tions:
• Each user is synchronized in symbol level as well as in

block level
• Only small part of all available users transmit information

simultaneously
• During transmission active user picks a pilot sequence

and its corresponding SCMA codebook according to its
user index or randomly

• Pilot sequences are assigned without repetitions
• For each user channel response within one fading block

is constant
• The size of fading block depends on the channel condition
• Each resourse block is competitively grant-free accessed

by multiple users
It should be mentioned that the number of available pilot

codes must exceed the number of active users in order to
ensure low error rate for user separation.

III. CHANNEL ESTIMATION ALGORITHM

A. Real-valued formulation and notation

In matrix notatin received pilot vector may be expressed as

~y = P~θ + ~n. (1)

Here we have to estimate vector ~θ =
[~c1a1, ~c2a2, . . . , ~cNan]T given ~y and P .

All the entries of (1) are complex-valued and for the sake
of clarity we will reformulate the problem of ~θ estimation in
terms of real-valued vectors and matrices. We use standard
embedding to the real vector spaces:

~yR ←[Re(y1), Im(y1), . . . , Re(yD), Im(yD)]T

~nR ←[Re(n1), Im(n1), . . . , Re(nD), Im(nD)]T

~θR ←[Re(c(1,1)a1), Im(c(1,1)a1), . . . , Re(c(1,Q)a1), Im(c(1,Q)a1),

. . .

Re(c(N,1)aN ), Im(c(N,1)aN ), . . . ,Re(c(N,Q)aN ), Im(c(N,Q)aN )]T

Vector ~θ contains information about channel coefficients for
Q fading blocks for N users. We used double indices to denote
its components, the dimensionality of embedded vector ~θR is
twice the dimensionality of ~θ. The embedding replaces each
complex fading block coefficient with its real and imaginary
parts, so we will use double indices to denote θR components
where the second integer in index now varies from 1 to 2Q.

Each component of P is mapped into 2 × 2 block in real-
valued matrix by the following rule:

PR,2i,2j , PR,2i+1,2j+1 ← Re(Pij)

PR,2i+1,2j ← Im(Pij)

PR,2i,2j+1 ← − Im(Pij)

From now we will operate only with real-valued vectors,
thus with a slight abuse of notation we will use the original
symbols to denote real-valued representations of vectors and
matrices (e.g. ~y instead of ~yR).

B. Probabilistic model

We consider the following probabilistic model of pilots
transmission for SCMA UL detection:

p(~y, ~θ|~γ) = p(~y|~θ)p(~θ|~γ) (2)

This model inherets distribution p(~y|~θ) from the channel
design and introduces a prior distribution p(~θ|~γ) in order to
perform Bayesian inference in the model.

Here the received vector ~y depends on channel parameter
vector ~θ as follows:

p(~y|~θ) = N (~y|P~θ, diag(ρ, ..., ρ))

This distribution both captures linear dependence between ~θ
and ~y, and additive Gaussian noise with variance ρ. We assume
that ρ is a fixed parameter that is known to the receiver.

Prior distribution over ~θ is parametrized by vector ~γ and
defined as follows:
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p(~θ|~γ) =
N∏
n=1

2Q∏
q=1

1√
2πγn

exp

{(
−
θ2

(n,q)

2γn

)}
= N (~θ|0,Γ),

were Γ = diag(γ1, ..., γ1︸ ︷︷ ︸
2Q

, ..., γN , ..., γN︸ ︷︷ ︸
2Q

).

Note that for each user n channel components
(θ(n,1), ..., θ(n,2Q)) have normal distribution with variance
parametrized by γn. If γn → 0, then the components of
distribution concentrates at zero. On the other hand, as γn
becomes larger, the distribution becomes less restrictive. Thus
p(~θ|~γ) is capable to model sparse vectors ~θ with certain
parameters ~γ.

C. Parameter estimation

A standard approach to infer a model parameter or an un-
observed variable with respect to observed data is to compute
it’s posterior distribution via Bayes rule. Given ~γ, one can
easily compute posterior distribution p(~θ|~y,~γ) to estimate ~θ.
However, parameters ~γ are not known, but the estimation
performance dramatically depends on their values.

Bayesian approach for point estimates suggests to select
parameters that maximize model evidence:

~γ∗ = argmax p(~y|~γ)

where evidence is defined by the summation rule:

p(~y|~γ) =

∫
p(~y, ~θ|~γ)p(~θ|~γ)d~θ.

Since the density function p(~y|~γ) is a convolution of two
normal distributions, it has the following form:

p(~y|~γ) =
1

(2π)D
|Σt|−

1
2 exp

(
−1

2
~yTΣ−1

t ~y

)
,

where Σt = 1
2ρI + PΓPT .

Analytical model evidence maximization leads to the system
of non-linear equations, and it is more practical to maximize
a lower bound for evidence via EM-algorithm. Consider the
following log-evidence representation:

log p(~y|γ) = Eq(~θ) log p(~y, ~θ|~γ)+H(q(~θ))+KL(q(~θ)||p(~θ|~y,~γ)).
(3)

Kullback-Leibler divergence KL(q(~θ)||p(~θ|~y,~γ)) is always
non-negative, thus terms L(q(θ), γ) = Eq(~θ) log p(~y, ~θ|~γ) +

H(q(~θ)) form a lower bound for log-evidence. EM-algorithm
iteratevly maximizes the evidence lower bound by minimizing
the third term in 3 and maximizing the first term in 3 is known
as EM-algorithm.

On k-th E-step the algorithm minimizes the third term in
(3) with respect to distribution q(~θ) by setting it to be equal
to

p(~θ|~y,~γ(k)) = N (µθ,Σθ)

~µθ = Γ(k)PT (PΓ(k)PT +
1

2ρ
I)−1~y

Σθ = Γ(k) − Γ(k)PT (PΓ(k)PT +
1

2ρ
I)−1PΓ(k)

for Γ(k) = diag(γ
(k)
1 , ..., γ

(k)
1︸ ︷︷ ︸

2Q

, ..., γ
(k)
N , ..., γ

(k)
N︸ ︷︷ ︸

2Q

).

Indices for ~µθ and Σθ are inherited from indices for ~θ. On
the M-step the first term in (3) is maximized with respect to
~γ. Finding exact maximum of the first term of (3) give us the
following set of equations:

0 = 2Q− 1

γn

2Q∑
q=1

(Σθ(n,q)(n,q) +µ2
θ(n,q)), n = 1, ..., N. (4)

Solving each equation with respect to γn leads to the
following M-step:

γ(k+1)
n =

∑2Q
q=1

(
Σθ(n,q)(n,q) + µ2

θ(n,q)

)
2Q

. (5)

This scheme was proposed [9], yet in the original paper a
different prior p(~θ|~γ) was used and the summation in (5) was
introduced as a heuristic. It turns out that the original scheme
can be represented as EM-algorithm in our probabilistic model.

In this paper we propose to follow the approach of McKay
[10] [13] for the M-step, since it is known to converge faster
in practice. Firstly, we rearrange the terms in (4) as follows:

1

γn

2Q∑
q=1

µ2
θ(n,q) = 2Q− 1

γn

2Q∑
q=1

Σθ(n,q)(n,q). (6)

Let us consider an iterative scheme where new values of
γ

(k+1)
n are evaluated by substituting all entries of γn with γ(k)

n

on the right hand side of 6, substituting γn with γ(k+1)
n on the

left hand side of the equation and solving it with respect to
γ

(k+1)
n . We obtain the following iterative scheme:

γ(k+1)
n =

γ
(k)
n
∑2Q
q=1 µ

2
θ(n,q)

γ
(k)
n 2Q−

∑2Q
q=1 Σθ(n,q)(n,q)

. (7)

It is clear that fixed points of this scheme are extreme
points of the evidence lower bound. This M-step defines EM-
algorithm summarized in Algorithm 1.

Complexity of the first algorithm was analyzed in [9], our
detector has the same complexity O(K(D3+(QN)3). Here K
is the maximal number of iterations, D is the dimensionality of
y, Q is number of fading blocks and N is number of potential
users.
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Algorithm 1 SBL-Based Active User Detector and Channel
Estimator for SCMA UL
Require: ~y is a real-valued received vector, P is a real-valued

matrix, ρ defines AWGN variance, ~γinitial is an initial
prior parameter, δ defines decision threshold, K defines
maximal number of iterations

1: function ESTIMATOR(~y, P, ρ,~γinitial, δ,K)
2: ~γ(1) ← ~γinitial

3: for k ← 1 to K do
4: Γ(k) ← diag(γ

(k)
1 , ...γ

(k)
1 , ..., γ

(k)
N , ..., γ

(k)
N )

5: ~µθ ← Γ(k)PT (PΓ(k)PT + 1
2ρI)−1~y

6: Σθ ← Γ(k) − Γ(k)PT (PΓ(k)PT + 1
2ρI)−1PΓ(k)

7: for n← 1 to N do
8: γ

(k+1)
n ←

∑2Q
q=1 µ

2
θ(n,q)

γ
(k)
n 2Q+

∑2Q
q=1 Σθ(n,q)(n,q)

9: if γ(k+1)
n < δ then

10: γ
(k+1)
n ← 0

11: end if
12: end for
13: end for
14: Γ ← diag(γ

(K)
1 , ...γ

(K)
1 , ..., γ

(K)
N , ..., γ

(K)
N )

15: θ̂ ← ΓPT (PΓPT + 1
2ρI)−1~y

16: return θ̂
17: end function

IV. SIMULATION RESULTS

Finally, simulation results are obtained to compare channel
estimation and user detection performance of the proposed
algorithm and the sparse Bayesian estimator from [9].

In our experiments we perform link-level simulation for
uplink transmission in Rayleigh fading channel. We simulate
a SCMA UL system with N = 36 potential and 6 active users.
The total resource block was divided into Q = 5 fading blocks,
within each fading block pilot sequences of 20 elemets were
assigned to each user.

We used the pilot sequences that are used in demodulated
reference signal in LTE systems [14]. We set 6 base pilot
sequences to be Zadoff-Chu sequences and then obtain new
sequences with cyclic shift of base pilot sequences.

We used Mean Square Error (MSE = E
[

(~θ−θ∗)T (~θ−θ∗)
N

]
)

to measure the quality of channel estimation and User Detec-
tion Error Rate (UDER = E

[∑N
n=1[ân 6=an∗ ]

N

]
) to measure the

quality of user detection. Also we analyzed the convergence of
the algorithm with respect to the maximal number of iterations
K.

Figure 1 shows the convergence of mean squared error for
diffefent channel conditions. The simulation results show that
the proposed scheme almost reaches the minimum of mean
squared error several times faster than the original algorithm.
On the other hand, the proposed scheme is less precise at
low signal-to-noise ratios. Figure 2 presents the convergence
of user detection error rate for different channel conditions. It
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Fig. 1. Convergence of the Mean Square Error of channel estimation for
different noise ratios
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Fig. 2. Convergence of the user detection error rate for different noise ratios

can be seen that the proposed scheme has both lower detection
error rate and converges faster.

Figure 3 demonstrates error rate after K = 20 iteration steps
for the original scheme and K = 10, 20 iteration steps for the
proposed scheme with different channel conditions. The sim-
ulation results show that the proposed scheme maintains user
detection improvement even for fewer number of iterations.

V. CONCLUSION

In this paper the improvement of active user detector
based on the theory of sparse Bayesian learning is proposed.
This improvement is inspired by an empirical fact about
EM-algorithm performance in the probabilistic model that
we use. Simulation results are provided to substantiate the
performance improvement of the detector and practical value
of the proposed scheme. Although no theoretical explanations
for this behavior are presented in literature, such explanations

Authorized licensed use limited to: Higher School of Economics. Downloaded on September 15,2020 at 06:40:35 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10 12 14 16 18 20

SNR/dB

0.00

0.25

0.50

U
se

r 
d
e
te

ct
io

n
 e

rr
o
r 

ra
te

Original, K = 20

Proposed, K = 10

Proposed, K = 20
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and adaptation of faster or approximate procedures to replace
matrix inversion in the algorithm are the directions for future
research.
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