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Abstract. Sobol’ indices are a common metric of dependency in sensi-
tivity analysis. It is used as a measure of confidence of input variables
influence on the output of the analyzed mathematical model. We con-
sider a problem of selection of experimental design points for Sobol’
indices estimation. Based on the concept of D-optimality, we propose
a method for constructing an adaptive design of experiments, effective
for the calculation of Sobol’ indices from Polynomial Chaos Expansions.
We provide a set of applications that demonstrate the efficiency of the
proposed approach.
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1 Introduction

Computational models play an important role in different areas of human activ-
ity [1–3]. Over the past decades, they have become more complex, and there is
an increasing need for special methods for the analysis of computational mod-
els. Sensitivity analysis is an important tool for investigation of computational
models.

Sensitivity analysis tries to find how different model input parameters influ-
ence the model output, what are the most influential parameters and how
to evaluate such effects quantitatively [4]. Sensitivity analysis allows to bet-
ter understand the behavior of computational models. Particularly, it allows us
to separate all input parameters into important (significant), relatively impor-
tant and unimportant (nonsignificant) ones. Important parameters, i.e. para-
meters whose variability has a strong effect on the model output, need to be
controlled more accurately. Complex computational models often suffer from
over-parameterization. By excluding unimportant parameters, we can poten-
tially improve model quality, reduce parametrization (which is of great interest
in the field of meta-modeling) and computational costs [26].
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Sensitivity analysis includes a wide range of metrics and techniques e.g. the
Morris method [5], linear regression-based methods [6], variance-based methods
[7]. Among others, Sobol’ (sensitivity) indices are a common metric to evaluate
the influence of model parameters [10]. Sobol’ indices describe the portion of
the output variance explained by different input parameters and combinations
thereof. This method is especially useful for the case of nonlinear computational
models [11].

There are two main approaches to evaluation of Sobol’ indices. Monte Carlo
approach (Monte Carlo simulation, FAST [12], SPF scheme [13] and others) is
relatively robust [8], but requires large number of model runs, typically in the
order of 104 for an accurate estimation of each index. Thus, it is impractical for
a number of industrial applications, where each model evaluation is computa-
tionally costly.

Metamodeling approaches for Sobol’ indices estimation allows one to reduce
the necessary number of model runs [6,9]. Following this approach, we replace
the original computational model by an approximating metamodel (also known
as surrogate model or response surface) which is computationally efficient and
has a clear internal structure [26]. The approach consists of the following general
steps: selection of the design of experiment (DoE) and generation of the training
sample set, construction of the metamodel based on the training samples, includ-
ing quality assessment and evaluation of Sobol’ indices (or any other measure)
using the constructed metamodel. Note that the evaluation of indices may be
either based on known internal structure of the metamodel or via Monte Carlo
simulation on the metamodel itself.

In general, a metamodeling approach is more computationally efficient than
a crude Monte Carlo approach, since the cost (in terms of the number of runs of
the costly computational model) reduces to that of the training set (in general,
a few dozens to a few hundreds). However, this approach may be nonrobust and
its accuracy is more difficult for analysis. Indeed, although procedures like cross-
validation [14,26] allow to estimate the quality of metamodels, the accuracy of
complex statistics (e.g. Sobol’ indices), derived from metamodels, has a compli-
cated dependency on the metamodels structure and quality (see e.g. confidence
intervals for Sobol’ indices estimates [15] in case of Gaussian Processes meta-
model [16–18] and bootstrap-based confidence intervals in case of polynomial
chaos expansions [19]).

In this paper, we consider a problem of a design construction for a particu-
lar metamodeling approach: how to select the experimental design for building
a polynomial chaos expansion for further evaluation of Sobol’ indices, that is
effective in terms of the number of computational model runs?

Space-filling designs are commonly used for sensitivity analysis. Methods
like Monte Carlo sampling, Latin Hypercube Sampling (LHS) [20] or sampling
in FAST method [12] try to fill “uniformly” the input parameters space with
design points (points are some realizations of parameters values). These sampling
methods are model free, as they make no assumptions on the computational
model.
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In order to speed up the convergence of indices estimates, we assume that the
computational model is close to its approximating metamodel and exploit knowl-
edge of the metamodel structure. In this paper, we consider Polynomial Chaos
Expansions (PCE) as a metamodel that is commonly used in engineering and other
applications [21]. PCE approximation is based on a series of polynomials (Hermite,
Legendre, Laguerre etc.) that are orthogonal w.r.t. the probability distributions of
corresponding input parameters of the computational model. It allows to calculate
Sobol’ indices analytically from the expansion coefficients [22,23].

In this paper, we address the problem of design of experiments construc-
tion for evaluating Sobol’ indices from a PCE metamodel. Based on asymptotic
considerations, we propose an adaptive algorithm for design and test it on a
set of applied problems. Note that in [33], we investigated the adaptive design
algorithm for the case of a quadratic metamodel (see also [34]). In this paper,
we extend the results for the case of a generalized PCE metamodel and provide
more examples, including real industrial applications.

The paper is organized as follows: in Sect. 2, we review the definition of
sensitivity indices and describe their estimation based on PCE metamodels.
In Sect. 3, asymptotic behavior of indices estimates is obtained. In Sect. 4, we
introduce an optimality criterion and propose a procedure for constructing the
experimental design. In Sect. 5, we provide experimental results, applications
and benchmark with other methods of design construction.

2 Sensitivity Indices and PCE Metamodels

2.1 Sensitivity Indices

Consider a computational model y = f(x), where x = (x1, . . . , xd) ∈ X ⊂ R
d is

a vector of input variables (or parameters or features), y ∈ R
1 is an output

variable and X is a design space. The model f(x) describes the behavior of
some physical system of interest.

We consider the model f(x) as a black-box: no additional knowledge on its
inner structure is assumed. For the selected design of experiments X = {xi ∈
X }n

i=1 ∈ R
n×d we can obtain a set of model responses and form a training

sample

L = {xi, yi = f(xi)}n
i=1 � {X ∈ R

n×d, Y = f(X) ∈ R
n}, (1)

which allows us to investigate properties of the computational model.
Assume there is a prescribed probability distribution H with independent

marginal distributions on the design space X (H = H1 × . . . × Hd). This
distribution represents the uncertainty and/or variability of the input variables,
modelled as a random vector X = {X1, . . . , Xd} with independent components.
In these settings, the model output becomes stochastic variable Y = f(X ).

Assuming that the function f(X ) is square-integrable with respect to distri-
bution H (i.e. E[f2(X )] < +∞)), we have the following unique Sobol’ decom-
position of Y = f(X ) [10] given by
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f(X ) = f0 +
d∑

i=1

fi(Xi) +
∑

1≤i≤j≤d

fij(Xi,Xj) + . . . + f1...d(X1, . . . , Xd),

which satisfies:
E[fu(X u)fv(X v)] = 0, if u �= v,

where u and v are index sets: u,v ⊂ {1, 2, . . . , d}.
Due to orthogonality of the summands, we can decompose the variance of

the model output:

D = V[f(X )] =
∑

u⊂{1,...,d},
u �=0

V[fu(X u)] =
∑

u⊂{1,...,d},
u �=0

Du,

In this expansion Du � V[fu(X u)] is the contribution of summand fu(X u)
to the output variance, also known as partial variance.

Definition 1. The sensitivity index (Sobol’ index) of variable set Xu, u ⊂
{1, . . . , d} is defined as

Su =
Du

D
. (2)

The sensitivity index describes the amount of the total variance explained
by the uncertainties in the subset of model input variables X u.

Remark 1. In this paper, we consider only sensitivity indices of type Si �
S{i}, i = 1, . . . , d, called first-order or main effect sensitivity indices.

2.2 Polynomial Chaos Expansions

Consider a set of multivariate polynomials {Ψα(X ), α ∈ L } that consists of
polynomials Ψα having the form of tensor product

Ψα(X ) =
d∏

i=1

ψ(i)
αi

(Xi), α = {αi ∈ N, i = 1, . . . , d} ∈ L ,

where ψ
(i)
αi is a univariate polynomial of degree αi belonging i-th family (e.g.

Legendre polynomials, Jacobi polynomials, etc.), N = {0, 1, 2, . . .} is the set of
nonnegative integers, L is some fixed set of multi-indices α.

Suppose that univariate polynomials {ψ
(i)
α } are orthogonal w.r.t. i-th mar-

ginal of the probability distribution H , i.e. E[ψ(i)
α (Xi)ψ

(i)
β (Xi)] = 0 if α �= β

for i = 1, . . . , d. Particularly, Legendre polynomials are orthogonal w.r.t. stan-
dard uniform distribution; Hermite polynomials are orthogonal w.r.t. Gaussian
distribution. Due to independence of X ’s components, we obtain that multivari-
ate polynomials {Ψα} are orthogonal w.r.t. the probability distribution H i.e.
E[Ψα(X )Ψβ(X )] = 0 if α �= β.
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Provided E[f2(X )] < +∞, the spectral polynomial chaos expansion of f
reads

f(X ) =
∑

α∈Nd

cαΨα(X ), (3)

where {cα} are coefficients.
In the sequel we consider a PCE approximation fPC(X ) of the model f(X )

obtained by truncating the infinite series to a finite number of terms:

ŷ = fPC(X ) =
∑

α∈L

cαΨα(X ). (4)

By enumerating the elements of L we will also use the alternative form of (4):

ŷ = fPC(X ) =
∑

α∈L

cαΨα(X ) �
P−1∑

j=0

cjΨj(X ) = cT Ψ(X ), P � |L |,

where c = (c0, . . . , cP−1)T is a column vector of coefficients and Ψ (x) : Rd → R
P

is a mapping from the design space to the extended design space defined as
a column vector function Ψ (x) = (Ψ0(x), . . . , ΨP−1(x))T . Note that index j = 0
corresponds to multi-index α = 0 = {0, . . . , 0} i.e.

cj=0 � cα=0, Ψj=0 � Ψα=0 = const.

The set of multi-indices L is determined by the truncation scheme. In this
work, we use hyperbolic truncation scheme [24], which corresponds to

L = {α ∈ N
d : ‖α‖q ≤ p}, ‖α‖q �

(
d∑

i=1

αq
i

)1/q

,

where q ∈ (0, 1] is a fixed parameter and p ∈ N\{0} = {1, 2, 3, . . .} is a fixed
maximal total degree of polynomials. Note that in case of q = 1, we have P =
(d+p)!

d!p! polynomials in L and smaller q leads to a smaller number of polynomials.
There is a number of strategies for calculating the expansion coefficients

cα in (4). In this paper, the least-square (LS) minimization method is used [25].
Expansion coefficients are calculated via minimization of the approximation error
on the training sample L = {xi, yi = f(xi)}n

i=1:

ĉLS = arg min
c∈RP

1
n

n∑

i=1

[
yi − cT Ψ (xi)

]2
. (5)

2.3 PCE Post-processing for Sensitivity Analysis

Consider a PCE model fPC(X ) =
∑

α∈L cαΨα(X ) =
∑P−1

j=0 cjΨj(X ). Accord-
ing to [22], we have an explicit form of Sobol’ indices (main effects) for model
fPC(X ):

Si(c) =

∑
α∈Li

c2αE[Ψ2
α(X )]

∑
α∈L∗ c2αE[Ψ2

α(X )]
, i = 1, . . . , d, (6)
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where L∗ � L \{0} and Li ⊂ L is the set of multi-indices α such that only
the index on the i-th position is nonzero: α = {0, . . . , αi, . . . , 0}, αi ∈ N, αi > 0.

Suppose for simplicity that the multivariate polynomials {Ψα(X ), α ∈ L }
are not only orthogonal but also normalized w.r.t. distribution H :

E[Ψα(X )Ψβ(X )] = δαβ, (7)

where δαβ is the Kronecker symbol, i.e. δαβ = 1 if α = β, otherwise δαβ = 0.
Then (6) takes the form

Si(c) =

∑
α∈Li

c2α∑
α∈L∗ c2α

, i = 1, . . . , d. (8)

Thus, (8) gives a simple expression for the calculation of Sobol’ indices for
PCE metamodels. If the original model of interest f(X ) is close to its PCE
approximation fPC(X ), then we can use the expression for indices (8) with
estimated coefficients (5) to approximate Sobol’ indices of the original model:

Ŝi = Si(ĉ) =

∑
α∈Li

ĉ2α∑
α∈L∗ ĉ2α

, i = 1, . . . , d, (9)

where ĉ � ĉLS .

3 Asymptotic Properties

In this section, we consider asymptotic properties of the indices estimates in
Eq. (9) if the coefficients (5) are estimated on noisy data. Unlike (3), the original
model is supposed to be the truncated PC with Gaussian noise:

f(x) = fPC(x) + ε =
P−1∑

j=0

cjΨj(x) + ε = cT Ψ(x) + ε, (10)

where ε ∼ N(0, σ2) is i.i.d. Gaussian noise. Let ĉn be the LS estimate (5) of the
true coefficients vector c based on the training sample L = {xi, yi = f(xi)}n

i=1.
In this section and further, if some variable has index n, then this variable
depends on the training sample (1) of size n; and all expectations and variances
are w.r.t. Gaussian noise.

Define information matrix An ∈ R
P×P as

An =
n∑

i=1

Ψ (xi)ΨT (xi), (11)

and assume that An is not degenerate, i.e. det An �= 0. Then, using standard
results for linear regression coefficients [26,27], we have

Eε[ĉn] = c, Vε[ĉn] = σ2A−1
n
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and
ĉn − c ∼ N (0, σ2A−1

n ). (12)

The following theorem allows to establish asymptotic properties of the indices
estimate based on the model (10) while new examples are added to the training
sample.

Theorem 1. 1. Let us assume that there is an infinite sequence of points in the
design space {xi ∈ X }∞

i=1, such that

1
n

An =
1
n

n∑

i=1

Ψ (xi)ΨT (xi) −→
n→+∞ Σ, (13)

where Σ ∈ R
P×P : Σ = ΣT , det Σ > 0, and new design points be added

successively from this sequence to the design of experiments Xn = {xi}n
i=1.

2. Let the sensitivity indices vector-function be defined by its components (8):

S(ν) = (S1(ν), . . . , Sd(ν))T

and Ŝn � S(ĉn), where ĉn is defined by (5).
3. Assume that for the true coefficients c of the model (10):

det(BΣ−1BT ) �= 0, (14)

where B is the matrix of partial derivatives defined as

B � B(c) =
∂S(ν)

∂ν

∣∣∣∣
ν=c

∈ R
d×P (15)

then

√
n (S(ĉn) − S(c)) D−→

n→+∞ N (0, σ2BΣ−1BT ). (16)

Proof

1. Condition (13) implies that detAn �= 0 starting from some n0. Therefore,
(12) holds true for n ≥ n0. Now, consider only n ≥ n0.

2. From (12) and (13) we have

√
n(ĉn − c) ∼ N (0, σ2(An/n)−1) D−→

n→+∞ N (0, σ2Σ−1).

3. Applying δ-method [28] on vector-function S(ν) at point ν = c, we obtain
required expression (16).

Remark 2. Note that the elements of B have the following form

biβ � ∂Si

∂cβ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2cβ

∑
α∈L∗ c2α−2cβ

∑
α∈Li

c2α

(∑α∈L∗ c2α)2
, if β ∈ Li,

0, if β = 0 � {0, . . . , 0},
−2cβ

∑
α∈Li

c2α

(∑α∈L∗ c2α)2
, if β /∈ Li ∪ 0,

(17)
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where i = 1, . . . , d and multi-index β ∈ L . The elements of B can be also
represented as

biβ � ∂Si

∂cβ
=

−2cβ∑
α∈L∗ c2α

×

⎧
⎪⎨

⎪⎩

Si − 1, if β ∈ Li,

0, if β = 0 � {0, . . . , 0},

Si, if β /∈ Li ∪ 0,

(18)

Remark 3. We can see that the theorem conditions do not depend on the type
of orthonormal polynomials.

4 Design of Experiments Construction

4.1 Preliminary Considerations

Taking into account the results of Theorem 1, the limiting covariance matrix of
the indices estimates depends on

1. Noise variance σ2,
2. True values of PC coefficients c, defining B,
3. Experimental design X, defining Σ.

If we have a sufficiently accurate approximation of the original model, then in
the above assumptions, the asymptotic formula (16) allows to evaluate the quality
of the experimental design. Indeed, generally speaking the smaller the norm of
the covariance matrix ‖σ2BΣ−1BT ‖, the better the estimation of the sensitivity
indices. Theoretically, we could use this formula for constructing an experimental
design that is effective for calculating Sobol’ indices: we could select designs that
minimize the norm of the covariance matrix. However, there are some problems
when proceeding this way:

– The first one relates to the selection of the specific functional for minimiza-
tion. Informally speaking, we need to choose “the norm” associated with the
limiting covariance matrix.

– The second one refers to the fact that we do not know the true values of the
PC model coefficients, defining B; therefore, we will not be able to accurately
evaluate the quality of the design.

The first problem can be solved in different ways. A number of statistical
criteria for design optimality (D-, I-optimality and others, see [29]) are known.
Similar to the work [33], we use the D-optimality criterion, as it a provides com-
putationally efficient procedure for design construction. D-optimal experimental
design minimizes the determinant of the limiting covariance matrix. If the vec-
tor of the estimated parameters is normally distributed then D-optimal design
allows to minimize the volume of the confidence region for this vector.

The second problem is more complex. The optimal design for estimating
sensitivity indices that minimizes the norm of limiting covariance matrix depends
on the true values of the indices, so it can be constructed only if these true values
are known. However, in this case design construction makes no sense.
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The dependency of the optimal design for indices evaluation on the true
model parameters is a consequence of the nonlinearity of the indices estimates
w.r.t. the PC model coefficients. In order to underline this dependency, the term
“locally D-optimal design” is commonly used [30]. In these settings, there are
several approaches, which are usually associated with either some assumptions
about the unknown parameters, or adaptive design construction [30]. We use the
latter approach.

In the case of adaptive designs, new design points are generated sequentially
based on current estimate of the unknown parameters. This allows to avoid a
priori assumptions on these parameters. However, this approach has a problem
with a confidence of the solution found: if at some step of design construction
parameters estimates are significantly different from their true values, then the
design, which is constructed based on these estimates, may lead to new parame-
ters estimates, which are also different from the true values.

In practice, during the construction of adaptive design, the quality of the
approximation model and assumptions on non-degeneracy of results can be
checked at each iteration and one can control and adjust the adaptive strategy.

4.2 Adaptive Algorithm

In this section, we introduce the adaptive algorithm for constructing a design of
experiments that is effective to estimate sensitivity indices based on the asymp-
totic D-optimality criterion (see the algorithm scheme and Fig. 1). As it was
discussed, the main idea of the algorithm is to minimize the confidence region
for indices estimates. At each iteration, we replace the limiting covariance matrix
by its approximation based on the current PC coefficients estimates.

As for initialization, we suppose that there is some initial design, and we
require that this initial design is non-degenerate, i.e. such that the initial infor-
mation matrix A0 is nonsingular (detA0 �= 0). In addition, at each iteration the
non-degeneracy of the matrix BiA

−1
i BT

i , related to the criterion to be minimized,
is checked.

Fig. 1. Adaptive algorithm for constructing an effective experimental design to evaluate
PC-based Sobol’ indices
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Goal: Construct an effective experimental design for the calculation of sensitivity
indices

Parameters: initial and final numbers of points n0 and n in the design; set of candidate
design points Ξ.

Initialization:

– initial training sample {X0, Y0} of size n0, where design X0 = {xi}n0
i=1 ⊂ Ξ defines

a non-degenerate information matrix A0 =
∑n0

i=1 Ψ (xi)Ψ
T (xi);

– B0 = B(ĉ0), obtained using the initial estimates of the coefficients of PC model,
see (15), (17), (18);

Iterations: for all i from 1 to n − n0:

– xi = arg minx∈Ξ det
[
Bi−1(Ai−1 + Ψ (x)Ψ T (x))−1BT

i−1

]

– Ai = Ai−1 + Ψ (xi)Ψ
T (xi)

– Add the new sample point (xi, yi = f(xi)) to the training sample and update
current estimates ĉi of the PCE model coefficients

– Calculate Bi = B(ĉi)

Output: The design of experiment X = X0 ∪ Xadd, where Xadd = {xk}n−n0
k=1

4.3 Details of the Optimization Procedure

The idea behind the proposed optimization procedure is analogous to the idea
of the Fedorov’s algorithm for constructing optimal designs [31].

In order to simplify the optimization problem, we use two well-known iden-
tities:

– Let M be some nonsingular square matrix, t and w be vectors such that
1 + wT M−1t �= 0, then

(M + twT )−1 = M−1 − M−1twT M−1

1 + wT M−1t
. (19)

– Let M be some nonsingular square matrix, t and w be vectors of appropriate
dimensions, then

det(M + twT ) = det(M) · (1 + wT M−1t). (20)

Define D � B(A + Ψ(x)ΨT (x))−1BT , then applying (19), we obtain

det(D) = det

[
BA−1BT − BA−1Ψ (x)ΨT (x)A−1BT

1 + ΨT (x)A−1Ψ (x)

]

� det
[
M − twT

]
, (21)

where M � BA−1BT , t � BA−1Ψ(x)
1+ΨT (x)A−1Ψ(x)

, w � BA−1Ψ (x). Assuming that
matrix M is nonsingular and applying (20), we obtain

det(D) = det(M) · (1 − wT M−1t) → min
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The resulting optimization problem is

wT M−1t → max (22)

or explicitly

(ΨT (x)A−1)BT (BA−1BT )−1B(A−1Ψ(x))
1 + ΨT (x)A−1Ψ(x)

→ max
x∈Ξ

. (23)

5 Benchmark

In this section, we validate the proposed algorithm on a set of computational
models of different input dimensions. Three analytic problems and two indus-
trial problems based on finite element models are considered. Input parameters
(variables) of the considered models have independent uniform and independent
normal distributions. For some models, independent gaussian noise is added to
their outputs.

At first, we form non-degenerate random initial design, and then we use vari-
ous techniques to add new design points iteratively. We compare our method for
design construction (denoted as Adaptive for SI) with the following methods:

– Random method iteratively adds new design points randomly from the set
of candidate design points Ξ;

– Adaptive D-opt iteratively adds new design points that maximize the deter-
minant of the information matrix (11): det An → maxxn∈Ξ [31]. The resulting
design is optimal, in some sense, for estimation of the coefficients of a PCE
model. We compare our method with this approach to prove that it gives
some advantage over usual D-optimality. Strictly speaking, D-optimal design
is not iterative but if we have an initial training sample then the sequential
approach seems natural generalization of a common D-optimal designs.

– LHS. Unlike other considered designs, this method is not iterative as a com-
pletely new design is generated at each step. This method uses Latin Hyper-
cube Sampling, as it is common to compute PCE coefficients.

The metric of design quality is the mean error defined as the distance

between estimated and true indices
√∑d

i=1(Si − Ŝ run
i )2 averaged over runs with

different random initial designs (200–400 runs). We consider not only mean error
but also its variance. Particularly, we use Welch’s t-test [32] to ensure that the
difference of mean distances is statistically significant for the various methods
considered. Note that lower p-values correspond to greater confidence.

In all cases, we assume that the truncation set (retained PCE terms) was
selected before the experiment.

5.1 Analytic Functions

Two analytic functions with uniformly distributed input variables are considered,
namely Sobol and Wing Weight functions. Independent gaussian noise is added
to their outputs to simulate random errors due to measurement uncertainty.
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The Sobol’ function is commonly used for benchmarking methods in global sen-
sitivity analysis

f(x) =
d∏

i=1

|4xi − 2| + ci

1 + ci
,

where xi ∼ U(0, 1). In our case, parameters d = 3, c = (0.0, 1.0, 1.5) are used.
Independent gaussian noise is added to the output of the function. The standard
deviation of noise is 0 (without noise), 0.2 and 1.4 that corresponds to 0%, 28%
and 194% of the function standard deviation due to given uncertainty of the
inputs. Analytical expressions for its sensitivity indices are available in [10].

The Wing Weight function models the weight of aircraft wing [35]

f(x) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04
(

100tc
cos(Λ)

)−0.3

(NzWdg)0.49

+SwWp,

where 10 input variables and their distributions are defined as: Sw ∼ U(150, 200),
wing area (ft2); Wfw ∼ U(220, 300), weight of fuel in the wing (lb); A ∼ U(6, 10),
aspect ratio; Λ ∼ U(−10, 10), quarter-chord sweep (degrees); q ∼ U(16, 45),
dynamic pressure at cruise (lb/ft2); λ ∼ U(0.5, 1), taper ratio; tc ∼ U(0.08, 0.18),
aerofoil thickness to chord ratio; Nz ∼ U(2.5, 6), ultimate load factor; Wdg ∼
U(1700, 2500), flight design gross weight (lb); Wp ∼ U(0.025, 0.08), paint weight
(lb/ft2). Independent gaussian noise N (0, 5.02) is added to the output of the
function.

Experimental setup for analytic functions is summarized in Table 1. In the exper-
iments, we assume that the set of candidate design points Ξ is a uniform grid in
the d-dimensional hypercube. Note that Ξ affects the quality of optimization.

5.2 Finite Element Models

Case 1: Truss Model. The deterministic computational model, originating from
[36], resembles the displacement V1 of a truss structure with 23 members as
shown in Fig. 2.

10 random variables are considered:

– E1, E2 (Pa) ∼ U(1.68 × 1011, 2.52 × 1011);
– A1 (m2) ∼ U(1.6 × 10−3, 2.4 × 10−3);
– A2 (m2) ∼ U(0.8 × 10−3, 1.2 × 10−3);
– P1 - P6 (N) ∼ U(3.5 × 104, 6.5 × 104);

It is assumed that all the horizontal elements have perfectly correlated
Young’s modulus and cros-sectional areas with each other and so is the case
with the diagonal members.
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Fig. 2. Truss structure with 23 members

Case 2: Heat Transfer Model. We consider the two-dimensional stationary heat
diffusion problem used in [37]. The problem is defined on the square domain D =
(−0.5, 0.5) × (−0.5, 0.5) shown in Fig. 3a, where the temperature field T (z), z ∈
D, is described by the partial differential equation:

−∇(κ(z)∇T (z)) = 500IA(z),

with boundary conditions T = 0 on the top boundary and ∇Tn = 0 on the left,
right and bottom boundaries, where n denotes the vector normal to the boundary;
A = (0.2, 0.3)×(0.2, 0.3) is a square domain within D and IA is the indicator func-
tion of A. The diffusion coefficient, κ(z), is a lognormal random field defined by

κ(z) = exp[ak + bkg(z)],

where g(z) is a standard Gaussian random field and the parameters ak and bk

are such that the mean and standard deviation of κ are μκ = 1 and σκ = 0.3,
respectively. The random field g(z) is characterized by an autocorrelation func-
tion ρ(z, z′) = exp(−‖z − z′‖2/0.22). The quantity of interest, Y , is the average
temperature in the square domain B = (−0.3,−0.2) × (−0.3,−0.2) within D
(see Fig. 3a).

To facilitate solution of the problem, the random field g(z) is represented
using the Expansion Optimal Linear Estimation (EOLE) method [38]. By trun-
cating the EOLE series after the first M terms, g(z) is approximated by

ĝ(z) =
M∑

i=1

ξi√
�i

φT
i Czζ

In the above equation, {ξ1, . . . , ξM} are independent standard normal variables;
Czζ is a vector with elements C(k)

zζ = ρ(z, ζk), where {ζ1, . . . , ζM} are the points
of an appropriately defined mesh in D; and (�i, φi) are the eigenvalues and
eigenvectors of the correlation matrix Cζζ with elements C(k,	)

ζζ = ρ(ζk, ζ	), where
k, � = 1, . . . , n. We select M = 53 in order to satisfy

M∑

i=1

�i/

n∑

i=1

�i ≥ 0.99
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(a) Finite-element mesh (b) Temperature field realizations

Fig. 3. Heat diffusion problem

The underlying deterministic problem is solved with an in-house finite-
element analysis code. The employed finite-element discretization with trian-
gular T3 elements is shown in Fig. 3a. Figure 3b shows the temperature fields
corresponding to two example realizations of the diffusion coefficient.

Experimental Setup. For these finite element models, we assume that the set of
candidate design points Ξ is

– a uniform grid in the 10-dimensional hypercube for Truss model;
– LHS design with normally distributed variables in 53-dimensional space for

Heat transfer model.

Experimental settings for all models are summarized in Table 1.

Table 1. Benchmark settings

Characteristic Sobol WingWeight Truss Heat transfer

Input dimension 3 10 10 53

Input distributions Unif Unif Unif Norm

PCE degree 9 4 4 2

q-norm 0.75 0.75 0.75 0.75

Regressors number 111 176 176 107

Initial design size 150 186 176 108

Added noise std (0, 0.2, 1.4) 5.0 — —

5.3 Results

Figures 4a, b, c, and 5 show results for analytic functions. Figures 6 and 7 present
results for finite element models.
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Fig. 4. Sobol function. 3-dimensional input.
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Fig. 5. WingWeight function. 10-dimensional input

Fig. 6. Truss model. 10-dimensional input

In the presented experiments, the proposed method performs better than
other considered methods in terms of the mean error of estimated indices. Par-
ticularly note its superiority over standard LHS approach that is commonly used
in practice. The difference in mean errors is statistically significant according to
Welch’s t-test.

Comparison of Fig. 4a, b, c with different levels of additive noise shows that
the proposed method is effective when the analyzed function is deterministic or
when the noise level is small.

Because of robust problem statement and limited accuracy of the optimiza-
tion, the algorithm may produce duplicate design points. Actually, it’s a common
situation for locally D-optimal designs [30]. If the computational model is deter-
ministic, one may modify the algorithm, e.g. exclude repeated design points.
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Fig. 7. Heat transfer model. 53-dimensional input

Although high dimensional optimization problems may be computationally
prohibitive, the proposed approach is still useful in high dimensional settings.
We propose to generate a uniform candidate set (e.g. LHS design of large size)
and then choose its subset for the effective calculation of Sobol’ indices using
our adaptive method (see results for Heat transfer model on Fig. 7).

It should be noted that in all presented cases the specification of sufficiently
accurate PCE model (reasonable values for degree and q-norm defining the trun-
cation set) is assumed to be known a priori and the size of the initial training
sample is sufficiently large. If we use an inadequate specification of the PCE
model (e.g. quadratic PCE in case of cubic analyzed function), the method will
perform worse in comparison with methods which do not depend on PCE model
structure. In any case, usage of inadequate PCE models may lead to inaccurate
results. That is why it is very important to control PCE model error during the
design construction. For example, one may use cross-validation for this purpose
[26]. Thus, if the PCE model error increases during design construction this may
indicate that the model specification is inadequate and should be changed.

6 Conclusions

We proposed the design of experiments algorithm for evaluation of Sobol’ indices
from PCE metamodel. The method does not depend on a particular form of
orthonormal polynomials in PCE. It can be used for the case of different distri-
butions of input parameters of the analyzed computational models.

The main idea of the method comes from metamodeling approach. We assume
that the computational model is close to its approximating PCE metamodel
and exploit knowledge of a metamodel structure. This allows us to improve the
evaluation accuracy. All comes with a price: if additional assumptions on the
computational model to provide good performance are not satisfied, one may
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expect accuracy degradation. Fortunately, in practice, we can control approx-
imation quality during design construction and detect that we have selected
inappropriate model. Note that from a theoretical point of view, our asymptotic
considerations (w.r.t. the training sample size) simplify the problem of accuracy
evaluation for the estimated indices.

Our experiments demonstrate: if PCE specification defined by the truncation
scheme is appropriate for the given computational model and the size of the
training sample is sufficiently large, then the proposed method performs better
in comparison with standard approaches for design construction.
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