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Abstract Global sensitivity analysis aims at quantifying respective effects of input ran-
dom variables (or combinations thereof) onto variance of a physical or mathematical
model response. Among the abundant literature on sensitivity measures, Sobol indices have
received much attention since they provide accurate information for most of models. We
consider a problem of experimental design points selection for Sobol’ indices estimation.
Based on the concept of D-optimality, we propose a method for constructing an adap-
tive design of experiments, effective for calculation of Sobol’ indices based on Polynomial
Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the
proposed approach.
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1 Introduction

Computational models play important role in different areas of human activity (see [1–3]).
Over the past decades, computational models have become more complex, and there is an
increasing need for special methods for their analysis. Sensitivity analysis is an important
tool for investigation of computational models.

Sensitivity analysis tries to find how different model input parameters influence the
model output, what are the most influential parameters and how to evaluate such effects
quantitatively (see [4]). Sensitivity analysis allows to better understand behavior of com-
putational models. Particularly, it allows us to separate all input parameters into important
(significant), relatively important and unimportant (nonsignificant) ones. Important param-
eters, i.e. parameters whose variability has a strong effect on the model output, need to
be controlled more accurately. Complex computational models often suffer from over-
parameterization. By excluding unimportant parameters, we can potentially improve model
quality, reduce parametrization (which is of great interest in the field of meta-modeling) and
computational costs [29].

Sensitivity analysis includes a wide range of metrics and techniques: e.g. the Morris
method [5], linear regression-based methods [6], variance-based methods [7]. Among oth-
ers, Sobol’ (sensitivity) indices are a common metric to evaluate the influence of model
parameters [11]. Sobol’ indices quantify which portions of the output variance are explained
by different input parameters and combinations thereof. This method is especially useful
for the case of nonlinear computational models [12].

There are two main approaches to evaluate Sobol’ indices. Monte Carlo approach
(Monte Carlo simulations, FAST [13], SPF scheme [14] and others) is relatively robust (see
[8]), but requires large number of model runs, typically in the order of 104 for an accu-
rate estimation of each index. Thus, it is impractical for a number of industrial applications,
where each model evaluation is computationally costly.

Metamodeling approaches for Sobol’ indices estimation allow one to reduce the required
number of model runs [6, 10]. Following this approach, we replace the original computa-
tional model by an approximating metamodel (also known as surrogate model or response
surface) which is computationally efficient and has some clear internal structure [9]. The
approach consists of the following general steps: selection of the design of experiments
(DoE) and generation of the training sample, construction of the metamodel based on the
training sample, including its accuracy assessment and evaluation of Sobol’ indices (or any
other measure) using the constructed metamodel. Note that the evaluation of indices may be
either based on a known internal structure of the metamodel or via Monte Carlo simulations
based on the metamodel itself.

In general, the metamodeling approach is more computationally efficient than an orig-
inal Monte Carlo approach, since the cost (in terms of the number of runs of the costly
computational model) reduces to that of the training set (usually containing results from a
few dozens to a few hundreds model runs). However, this approach can be nonrobust and
its accuracy is more difficult to analyze. Indeed, although procedures like cross-validation
[15, 29] allow to estimate quality of metamodels, the accuracy of complex statistics (e.g.
Sobol’ indices), derived from metamodels, has a complicated dependency on the metamod-
els structure and quality (see e.g. confidence intervals for Sobol’ indices estimates [16] in
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case of Gaussian Process metamodel [17–21] and bootstrap-based confidence intervals in
case of polynomial chaos expansions [22]).

In this paper, we consider a problem of a DoE construction in case of a particular meta-
modeling approach: how to select the experimental design for building a polynomial chaos
expansion for further evaluation of Sobol’ indices, that is effective in terms of the number
of computational model runs?

Space-filling designs are commonly used for sensitivity analysis. Methods like Monte
Carlo sampling, Latin Hypercube Sampling (LHS) [23] or sampling in FAST method [13]
try to fill “uniformly” the input parameters space with design points (points are some real-
izations of parameters values). These sampling methods are model free, as they make no
assumptions on the computational model.

In order to speed up the convergence of indices estimates, we assume that the com-
putational model is close to its approximating metamodel and exploit knowledge of the
metamodel structure. In this paper, we consider Polynomial Chaos Expansions (PCE) that
is commonly used in engineering and other applications [24]. PCE approximation is based
on a series of polynomials (Hermite, Legendre, Laguerre etc.) that are orthogonal w.r.t. the
probability distributions of corresponding input parameters of the computational model. It
allows to calculate Sobol’ indices analytically from the expansion coefficients [25, 26].

In this paper, we address the problem of design of experiments construction for evaluat-
ing Sobol’ indices from a PCE metamodel. Based on asymptotic considerations, we propose
an adaptive algorithm for design construction and test it on a set of applied problems. Note
that in [36], we investigated the adaptive design algorithm for the case of a quadratic meta-
model (see also [37]). In this paper, we extend these results for the case of a generalized
PCE metamodel and provide more examples, including real industrial applications.

The paper is organized as follows: in Section 2, we review the definition of sensitivity
indices and describe their estimation based on a PCE metamodel. In Section 3, asymptotic
analysis of indices estimates is provided. In Section 4, we introduce an optimality crite-
rion and propose a procedure for constructing the experimental design. In Section 5, we
provide experimental results, applications and benchmark with other methods of design
construction.

2 Sensitivity indices and PCE metamodel

2.1 Sensitivity indices

Consider a computational model y = f (x), where x = (x1, . . . , xd) ∈ X ⊂ R
d is a vector

of input variables (aka parameters or features), y ∈ R
1 is an output variable and X is a

design space. The model f (x) describes behavior of some physical system of interest.
We consider the model f (x) as a black-box: no additional knowledge on its inner struc-

ture is assumed. For some design of experiments X = {xi ∈ X }ni=1 ∈ R
n×d we can obtain

a set of model responses and form a training sample

L = {xi , yi = f (xi )}ni=1 � {X ∈ R
n×d , Y = f (X) ∈ R

n}, (1)

which allows us to investigate properties of the computational model.
Let us assume that there is a prescribed probability distribution H with independent

marginal distributions on the design space X (H = H1 × . . . × Hd ). This distribution
represents the uncertainty and/or variability of the input variables, modelled as a random
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vectorX = {X1, . . . , Xd} with independent components. In these settings, the model output
Y = f (X) becomes a stochastic variable.

Assuming that the function f (X) is square-integrable with respect to the distribution H
(i.e. E[f 2(X)] < +∞), we have the following unique Sobol’ decomposition of Y = f (X)

(see [11]) given by

f (X) = f0 +
d∑

i=1

fi(Xi) +
∑

1≤i≤j≤d

fij (Xi, Xj ) + . . . + f1...d (X1, . . . , Xd),

which satisfies
E[fu(Xu)fv(Xv)] = 0, if u �= v,

where u and v are index sets: u, v ⊂ {1, 2, . . . , d}.
Due to orthogonality of the summands, we can decompose variance of the model output:

D = V[f (X)] =
∑

u⊂{1,...,d},
u�=0

V[fu(Xu)] =
∑

u⊂{1,...,d},
u�=0

Du,

In this expansion Du � V[fu(Xu)] is the contribution of the summand fu(Xu) to the output
variance, also known as the partial variance.

Definition 1 The sensitivity index (Sobol’ index) of the subsetXu, u ⊂ {1, . . . , d} of model
input variables is defined as

Su = Du

D
.

The sensitivity index describes the amount of the total variance explained by uncertain-
ties in the subset Xu of model input variables.

Remark 1 In this paper, we consider only sensitivity indices of type Si � S{i}, i = 1, . . . , d ,
called first-order or main effect sensitivity indices.

2.2 Polynomial chaos expansions

Consider a set of multivariate polynomials {�α(X), α ∈ L } that consists of polynomials
�α having the form of tensor product

�α(X) =
d∏

i=1

ψ(i)
αi

(Xi), α = {αi ∈ N, i = 1, . . . , d} ∈ L ,

where ψ
(i)
αi

is a univariate polynomial of degree αi belonging to the i-th family (e.g. Leg-
endre polynomials, Jacobi polynomials, etc.), N = {0, 1, 2, . . .} is the set of nonnegative
integers, L is some fixed set of multi-indices α.

Suppose that univariate polynomials {ψ(i)
α } are orthogonal w.r.t. i-th marginal of the

probability distribution H , i.e. E[ψ(i)
α (Xi)ψ

(i)
β (Xi)] = 0 if α �= β for i = 1, . . . , d .

Particularly, Legendre polynomials are orthogonal w.r.t. standard uniform distribution;
Hermite polynomials are orthogonal w.r.t. Gaussian distribution. Due to independence of
components of X, we obtain that multivariate polynomials {�α} are orthogonal w.r.t. the
probability distribution H , i.e.

E[�α(X)�β(X)] = 0 if α �= β. (2)
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Provided E[f 2(X)] < +∞, the spectral polynomial chaos expansion of f takes the form

f (X) =
∑

α∈Nd

cα�α(X), (3)

where {cα}α∈Nd are expansion coefficients.
In the sequel we consider a PCE approximation fPC(X) of the model f (X) obtained by

truncating the infinite series to a finite number of terms:

Ŷ = fPC(X) =
∑

α∈L

cα�α(X). (4)

By enumerating the elements of L we also use an alternative form of (4):

Ŷ = fPC(X) =
∑

α∈L

cα�α(X) �
P−1∑

j=0

cj�j (X) = cT �(X), P � |L |,

where c = (c0, . . . , cP−1)
T is a column vector of coefficients and �(x) : Rd → R

P is a
mapping from the design space to the extended design space defined as a column vector
function �(x) = (�0(x), . . . , �P−1(x))T . Note that index j = 0 corresponds to multi-
index α = 0 = {0, . . . , 0}, i.e.

cj=0 � cα=0, �j=0 � �α=0 = const.

The set of multi-indices L is determined by some truncation scheme. In this work, we
use hyperbolic truncation scheme [27], which corresponds to

L = {α ∈ N
d : ‖α‖q ≤ p}, ‖α‖q �

(
d∑

i=1

α
q
i

)1/q

,

where q ∈ (0, 1] is a fixed parameter and p ∈ N\{0} = {1, 2, 3, . . .} is a fixed maximal
total degree of polynomials. Note that in case of q = 1, we have P = (d+p)!

d!p! polynomials
in L and a smaller q leads to a smaller number of polynomials.

There is a number of strategies for estimating the expansion coefficients cα in (4). In
this paper, the least-square (LS) minimization method is used [28]. Unlike (3), the key idea
consists in considering the original model f (X) as the sum of a truncated PC expansion
fPC(X) and a residual ε, i.e.

f (X) = fPC(X) + ε =
P−1∑

j=0

cj�j (X) + ε = cT �(X) + ε, (5)

where thanks to orthogonality property (2) the residual process ε can be considered as an
i.i.d. noise process with Eε = 0 and V[ε] = σ 2, such that ε = ε(X) and {�j(X)}P−1

j=0 are
orthogonal w.r.t. the distribution H .

The coefficients c are obtained by minimizing the mean square residual:

c = arg min
c∈RP

E

[(
f (X) − cT �(X)

)2]
,

which is approximated by using the training sample L = {xi , yi = f (xi )}ni=1:

ĉLS = arg min
c∈RP

1

n

n∑

i=1

[
yi − cT �(xi )

]2
. (6)
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2.3 PCE post-processing for sensitivity analysis

Consider some PCE model fPC(X) = ∑
α∈L cα�α(X) = ∑P−1

j=0 cj�j (X). According to
[25], we have an explicit form of Sobol’ indices (main effects) for model fPC(X):

Si(c) =
∑

α∈Li
c2αE[�2

α(X)]
∑

α∈L∗ c2αE[�2
α(X)] , i = 1, . . . , d, (7)

where L∗ � L \{0} and Li ⊂ L is the set of multi-indices α such that only index on the
i-th position is nonzero: α = {0, . . . , αi, . . . , 0}, αi ∈ N, αi > 0.

Suppose for simplicity that the multivariate polynomials {�α(X), α ∈ L } are not only
orthogonal but also normalized w.r.t. the distribution H :

E[�α(X)�β(X)] = δαβ ,

where δαβ is the Kronecker symbol, i.e δαβ = 1 if α = β, otherwise δαβ = 0. Then (7)
takes the form

Si(c) =
∑

α∈Li
c2α∑

α∈L∗ c2α
, i = 1, . . . , d. (8)

Thus, (8) provides a simple expression for calculation of Sobol’ indices in case of the
PCE metamodel. If the original model of interest f (X) is close to its PCE approxima-
tion fPC(X), then we can use expression (8) for indices with estimated coefficients (6) to
approximate Sobol’ indices of the original model:

Ŝi = Si(ĉ) =
∑

α∈Li
ĉ2α∑

α∈L∗ ĉ2α
, i = 1, . . . , d, (9)

where ĉ � ĉLS .

3 Asymptotic properties

In this section, we consider asymptotic properties of indices estimates in Eq. (9) if the
coefficients c are estimated by LS approach (6). Let ĉn be LS estimate (6) of the true coef-
ficients vector c based on the training sample L = {xi , yi = f (xi )}ni=1. In this section and
further, if some variable has index n, then this variable depends on training sample (1) of
size n.

Define the information matrix An ∈ R
P×P as

An =
n∑

i=1

�(xi )�
T (xi ). (10)

Then, we can obtain asymptotic properties of the indices estimates (9) based on model (5)
while new data points {xn, yn = f (xn)} are added to the training sample sequentially. In
order to prove these asymptotic properties we require only that ε = ε(X) and {�j(X)}P−1

j=0
are orthogonal w.r.t. the distribution H , and we do not need to require that multivariate
polynomials{�α(X), α ∈ L } are orthonormal.
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Theorem 1 Let the following assumptions hold true:

1. We assume that there is an infinite sequence of points in the design space {xi ∈ X }∞i=1,
generated by the corresponding sequence of i.i.d. random vectors, such that a.s.

1

n
An = 1

n

n∑

i=1

�(xi )�
T (xi ) −→

n→+∞ 	, (11)

where 	 ∈ R
P×P , where 	 is a symmetric and non-degenerate matrix (	 = 	T and

det	 > 0), and new design points are added successively from this sequence to the
design of experiments Xn = {xi}ni=1.

2. Let the vector-function be defined by its components according to (8):

S(ν) = (S1(ν), . . . , Sd(ν))T

and Ŝn � S(ĉn), where ĉn is defined by (6).
3. Assume that for the true coefficients c of model (5):

det(B	−2
BT ) �= 0, (12)

where B is the matrix of partial derivatives defined as

B � B(c) = ∂S(ν)

∂ν

∣∣∣∣
ν=c

∈ R
d×P , (13)

and 
 = (γr,s)
P−1
r,s=0 ∈ R

P×P with γr,s = E
(
ε2�r(X)�s(X)

)
,

then √
n

(
S(ĉn) − S(c)

) D−→
n→+∞ N (0, B	−2
BT ). (14)

Proof Let us denote by εn = (ε1, . . . , εn)
T ∈ R

n the column vector, generated by the i.i.d.
residual process values (see (5)), and by �n = (�(x1), . . . ,�(xn)) ∈ R

P×n the design
matrix. We can easily get that

ĉn = A−1
n �nYn = c +

(
1

n
An

)−1 [
1

n
�nεn

]
.

We can represent 1
n
�nεn as 1

n

∑n
i=1 ξ i , where (ξ i )

n
i=1 is a sequence, generated by i.i.d.

random vectors ξ i = ε(Xi )�(Xi ) ∈ R
P , i = 1, . . . , n, such that Eξ i = 0 thanks to the fact

that ε and �k(X) are orthogonal for k < P , and V[ξ i] = 
.
Thus from (11) and the central limit theorem we get that

√
n(ĉn − c) =

(
1

n
An

)−1
[

1√
n

n∑

i=1

ξ i

]
D−→

n→+∞ N (0, 	−2
).

Applying δ-method (see [30]) to the vector-function S(ν) at the point ν = c, we obtain
required asymptotics (14).

Remark 2 Note that the elements of B have the following form

biβ � ∂Si

∂cβ

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2cβ

∑
α∈L∗ c2α−2cβ

∑
α∈Li

c2α
(∑

α∈L∗ c2α
)2 , if β ∈ Li ,

0, if β = 0 � {0, . . . , 0},
−2cβ

∑
α∈Li

c2α
(∑

α∈L∗ c2α
)2 , if β /∈ Li ∪ 0,

(15)
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where i = 1, . . . , d and multi-index β ∈ L . The elements of B can be also represented
as

biβ � ∂Si

∂cβ

= −2cβ∑
α∈L∗ c2α

×
⎧
⎨

⎩

Si − 1, if β ∈ Li ,

0, if β = 0 � {0, . . . , 0},
Si, if β /∈ Li ∪ 0,

(16)

Remark 3 We can see that conditions of the theorem do not depend on the type of
orthonormal polynomials.

Remark 4 In case {�α(X), α ∈ L } are multivariate polynomials, orthonormal w.r.t. the
distribution H , we get that 	 = I ∈ R

P×P is the identity matrix.

Remark 5 In the proof of theorem 1 we are trying to make as less assumptions as possible
in order to depart from original polynomial chaos model (3) as little as possible. That is why
the only important assumption is that ε = ε(X) and {�j(X)}P−1

j=0 are orthogonal w.r.t. the
distribution H . However, we can also consider model (5) as a regression one, and so the
error term ε is modelled by a white noise, independent from {�j(X)}P−1

j=0 , see the discussion
of the polynomial chaos approach from a statistician’s perspective in [31]. Nevertheless,
even in the case of such interpretation of model (5) we still get the same asymptotic behavior
(14).

Remark 6 In case ε and �k(X) are not only orthogonal for k < P , but also are independent,
we get that 
 = σ 2	. Then asymptotics (14) takes the form

√
n

(
S(ĉn) − S(c)

) D−→
n→+∞ N (0, σ 2B	−1BT ). (17)

In applications it seems reasonable to assume that ε and �k(X) are approximately inde-
pendent for k < P . Then for practical purposes we can use asymptotics (17), for which it is
easier to calculate the asymptotic covariance matrix. Therefore in the sequel for applications
we are going to use this simplified expression.

4 Design of experiments construction

4.1 Preliminary considerations

Taking into account the results of Theorem 1, the limiting covariance matrix of the indices
estimates depends on

1. Noise variance σ 2,
2. True values of PC coefficients c, defining B,
3. Experimental design X, defining 	.

If we have a sufficiently accurate approximation of the original model, then in the above
assumptions, asymptotic covariance in (17) provides a theoretically motivated functional to
characterize the quality of the experimental design. Indeed, generally speaking the smaller
the norm of the covariance matrix ‖σ 2B	−1BT ‖, the better the estimation of the sensitivity
indices apparently should be. Theoretically, we could use this formula for constructing an
experimental design that is effective for calculating Sobol’ indices: we could select designs
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that minimize the norm of the covariance matrix. However, there are some problems when
proceeding this way:

– The first one relates to selecting some specific functional for minimization. Infor-
mally speaking, we need to choose “the norm” associated with the limiting covariance
matrix;

– The second one refers to the fact that we do not know true values of the PC model
coefficients, defining B; therefore, we will not be able to accurately evaluate the quality
of the design.

The first problem can be solved in different ways. A number of statistical criteria for
design optimality (D-, I -optimality and others, see [32]) are known. Similar to the work
[36], we use the D-optimality criterion, as it a provides computationally efficient procedure
for design construction. D-optimal experimental design minimizes the determinant of the
limiting covariance matrix. If the vector of the estimated parameters is normally distributed
then D-optimal design allows to minimize the volume of the confidence region for this
vector.

The second problem is more complex. The optimal design for estimating sensitivity
indices that minimizes the norm of limiting covariance matrix depends on true values of the
indices, so it can be constructed only if these true values are known. However, in this case
design construction makes no sense.

The dependency of the optimal design for indices evaluation on the true model parame-
ters is a consequence of the indices estimates nonlinearity w.r.t. the PC model coefficients.
In order to underline this dependency, the term “locally D-optimal design” is commonly
used [33]. In this setting there are several approaches, which are usually associated with
either some assumptions about the unknown parameters, or adaptive design construction
(see [33]). We use the latter approach.

In the case of adaptive designs, new design points are generated sequentially based on
current estimates of the unknown parameters. This allows to avoid prior assumptions on
these parameters. However, this approach has a problem with a confidence of the solution
found: if at some step of the design construction process parameters estimates are signifi-
cantly different from their true values, then the design, which is constructed based on these
estimates, may lead to new parameters estimates, which are even more different from the
true values.

In practice, during the construction of adaptive design, the quality of the approximation
model and assumptions on non-degeneracy of results can be checked at each iteration and
one can control and adjust the adaptive strategy.

4.2 Adaptive DoE algorithm

In this section, we introduce the adaptive algorithm for constructing a design of experi-
ments that is effective to estimate sensitivity indices based on the asymptotic D-optimality
criterion (see description of Algorithm 1 and its scheme in Fig. 1). As it was discussed, the
main idea of the algorithm is to minimize the confidence region for indices estimates. At
each iteration, we replace the limiting covariance matrix by its approximation based on the
current PC coefficients estimates.

As for initialization, we assume that there is some initial design, and we require that this
initial design is non-degenerate, i.e. such that the initial information matrix A0 is nonsingu-
lar (detA0 �= 0). In addition, at each iteration the non-degeneracy of the matrix BiA

−1
i BT

i ,
related to the criterion to be minimized, is checked.
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Fig. 1 Adaptive algorithm for constructing an effective experimental design to evaluate PC-based Sobol’
indices

4.3 Details of the optimization procedure

The idea behind the proposed optimization procedure is analogous to the idea of the
Fedorov’s algorithm for constructing optimal designs [34]. In order to simplify optimization
problem (18), we use two well-known identities:

– Let M be some nonsingular square matrix, t and w be vectors such that 1+wT M−1t �=
0, then

(M + twT )−1 = M−1 − M−1twT M−1

1 + wT M−1t
. (19)

Algorithm 1 Description of the Adaptive DoE algorithm

Goal: Construct an effective experimental design for the calculation of sensitivity indices
Parameters: initial and final numbers of points n0 and n in the design; set of candidate

design points .
Initialization:

– initial training sample {X0, Y0} of size n0, where design X0 = {xi}n0i=1 ⊂  defines a
non-degenerate information matrix A0 = ∑n0

i=1 �(xi )�
T (xi );

– B0 = B(ĉ0), obtained using the initial estimates of the PC model coefficients, see (13),
(15), (16);

Iterations: for all i from 1 to n − n0:

– Solve optimization problem

xi = argminx∈ det
[
Bi−1(Ai−1 + �(x)�T (x))−1BT

i−1

]
(18)

– Ai = Ai−1 + �(xi )�
T (xi )

– Add the new sample point (xi , yi = f (xi )) to the training sample and update current
estimates ĉi of the PCE model coefficients

– Calculate Bi = B(ĉi )

Output: The design of experiments X = X0 ∪ Xadd , where Xadd = {xk}n−n0
k=1 , Y = f (X)
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– Let M be some nonsingular square matrix, t and w be vectors of appropriate dimen-
sions, then

det(M + twT ) = det(M) · (1 + wT M−1t). (20)

Let us define D � B(A + �(x)�T (x))−1BT , then applying (19), we obtain

det(D) = det

[
BA−1BT − BA−1�(x)�T (x)A−1BT

1 + �T (x)A−1�(x)

]

� det
[
M − twT

]
,

where M � BA−1BT , t � BA−1�(x)
1+�T (x)A−1�(x)

, w � BA−1�(x). Assuming that matrix M is

nonsingular and applying (20), we obtain

det(D) = det(M) · (1 − wT M−1t) → min .

The resulting optimization problem is

wT M−1t → max,

or explicitly (18) is reduced to

(�T (x)A−1)BT (BA−1BT )−1B(A−1�(x))

1 + �T (x)A−1�(x)
→ max

x∈
.

5 Benchmark

In this section, we validate the proposed algorithm on a set of computational models with
different input dimensions. Several analytic problems and two industrial problems based
on finite element models are considered. Input parameters (variables) of the considered
models have independent uniform and independent normal distributions. For some models,
additionally independent gaussian noise is added to their outputs.

At first, we form non-degenerate random initial design, and then we use various tech-
niques to add new design points iteratively. We compare our method for design construction
(denoted as Adaptive for SI) with the following methods:

– Randommethod iteratively adds new design points randomly from the set of candidate
design points ;

– Adaptive D-opt iteratively adds new design points that maximize the determinant of
information matrix (10): detAn → maxxn∈ ([34]). The resulting design is optimal, in
some sense, for estimation of the PCEmodel coefficients. We compare our method with
this approach to prove that it gives some advantage over usual D-optimality. Strictly
speaking, D-optimal design is not iterative but if we have an initial training sample
then the sequential approach seems a natural generalization of a common D-optimal
designs.

– LHS. Unlike other considered designs, this method is not iterative as a completely new
design is generated at each step. This method uses Latin Hypercube Sampling, and it is
common to compute PCE coefficients.

The metric of design quality is the mean error defined as the distance between esti-

mated and true indices
√∑d

i=1(Si − Ŝ run
i )2 averaged over runs with different random initial



198 E. Burnaev et al.

designs (200-400 runs). We consider not only the mean error but also its variance. Partic-
ularly, we use Welch’s t-test (see [35]) to ensure that the difference of mean distances is
statistically significant for the considered methods. Note that lower p-values correspond to
bigger confidence.

In all cases, we assume that the truncation set (retained PCE terms) is selected before an
experiment.

5.1 Analytic functions

The Sobol’ function is commonly used for benchmarking methods in global sensitivity
analysis

f (x) =
d∏

i=1

|4xi − 2| + ci

1 + ci

,

where xi ∼ U(0, 1). In our case parameters d = 3, c = (0.0, 1.0, 1.5) are used. Inde-
pendent gaussian noise is added to the output of the function. The standard deviation of
noise is 0 (without noise), 0.2 and 1.4 that corresponds to 0 %, 28 % and 194 % of the
function standard deviation, caused by the inputs uncertainty. Analytical expressions for the
corresponding sensitivity indices are available in [11].

Ishigami function is also commonly used for benchmarking of global sensitivity analysis:

f (x) = sin x1 + a sin2 x2 + bx4
3 sin x1, a = 7, b = 0.1

where xi ∼ U(−π, π). Theoretical values for its sensitivity indices are available in [16].

Environmental function models a pollutant spill caused by a chemical accident [44]

f (x) = √
4πC(x), x = (M, d, L, τ),

C(x) = M√
4πDt

exp

(
−s2

4Dt

)
+ M√

4πD(t − τ)
exp

(
− (s − L)2

4D(t − τ)

)
I (τ < t),

where I is the indicator function; 4 input variables and their distributions are defined as: M
∼ U(7, 13), mass of pollutant spilled at each location; D ∼ U(0.02, 0.12), diffusion rate in
the channel; L ∼ U(0.01, 3), location of the second spill; τ ∼ U(30.01, 30.295), time of
the second spill. C(x) is the concentration of the pollutant at the space-time vector (s, t),
where 0 ≤ s ≤ 3 and t > 0.

We consider a cross-section corresponding to t = 40, s = 1.5 and suppose that
independent gaussian noiseN (0, 0.52) is added to the output of the function.

The Borehole function models water flow through a borehole. It is commonly used for
testing different methods in numerical experiments [42, 43]

f (x) = 2πTu(Hu − Hl)

ln(r/rw)(1 + 2LTu

ln(r/rw)r2wKw
+ Tu/Tl)

,

where 8 input variables and their distributions are defined as: rw ∼ U(0.05, 0.15), radius
of borehole (m); Tu ∼ U(63070, 115600), transmissivity of upper aquifer (m2/yr); r ∼
U(100, 50000), radius of influence (m); Hu ∼ U(990, 1110), potentiometric head of upper
aquifer (m); Tl ∼ U(63.1, 116), transmissivity of lower aquifer (m2/yr); Hl ∼ U(700, 820),
potentiometric head of lower aquifer (m); L ∼ U(1120, 1680), length of borehole (m); Kw

∼ U(9855, 12045), hydraulic conductivity of borehole (m/yr).
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Table 1 Benchmark settings for analytical functions

Characteristic Sobol Ishigami Environmental Borehole WingWeight

Input dimension 3 3 4 8 10

Input distributions Unif Unif Unif Unif Unif

PCE degree 9 9 5 4 4

q-norm 0.75 0.75 1 0.75 0.75

Regressors number 111 111 126 117 176

Initial design size 150 120 126 117 186

Added noise std (0, 0.2, 1.4) – 0.5 (0, 5.0) (0, 5.0)

Besides the deterministic case, we also consider stochastic one when independent
gaussian noiseN (0, 5.02) is added to the output of the function.

The Wing Weight function models weight of an aircraft wing [38]

f (x) = 0.036S0.758
w W 0.0035

f w

(
A

cos2(�)

)0.6

q0.006λ0.04
(

100tc
cos(�)

)−0.3

(NzWdg)
0.49

+SwWp,

where 10 input variables and their distributions are defined as: Sw ∼ U(150, 200), wing area
(f t2); Wf w ∼ U(220, 300), weight of fuel in the wing (lb); A ∼ U(6, 10), aspect ratio; �

∼ U(−10, 10), quarter-chord sweep (degrees); q ∼ U(16, 45), dynamic pressure at cruise
(lb/f t2); λ ∼ U(0.5, 1), taper ratio; tc ∼ U(0.08, 0.18), aerofoil thickness to chord ratio; Nz

∼ U(2.5, 6), ultimate load factor; Wdg ∼ U(1700, 2500), flight design gross weight (lb);
Wp ∼ U(0.025, 0.08), paint weight (lb/f t2).

Besides the deterministic case, we also consider stochastic one when independent
gaussian noiseN (0, 5.02) is added to the output of the function.

Experimental setup In the experiments, we assume that the set of candidate design points
 is a uniform grid in the d-dimensional hypercube. Note that  affects optimization
quality. Experimental settings for analytical functions are summarized in Table 1.

Fig. 2 Truss structure with 23 members
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(a) (b)

Fig. 3 Heat diffusion problem

5.2 Finite element models

Case 1: Truss model The deterministic computational model, originating from [39],
resembles the displacement V1 of a truss structure with 23 members as shown in Fig. 2.

Ten random variables are considered:

– E1, E2 (Pa) ∼ U(1.68 × 1011, 2.52 × 1011);
– A1 (m2) ∼ U(1.6 × 10−3, 2.4 × 10−3);
– A2 (m2) ∼ U(0.8 × 10−3, 1.2 × 10−3);
– P1 - P6 (N) ∼ U(3.5 × 104, 6.5 × 104).

It is assumed that all the horizontal elements have perfectly correlated Young’s modulus
and cros-sectional areas with each other and so is the case with the diagonal members.

Case 2: Heat transfer model We consider the two-dimensional stationary heat diffusion
problem described in [40]. The problem is defined on the square domain D = (−0.5, 0.5)×
(−0.5, 0.5) shown in Fig. 3a, where the temperature field T (z), z ∈ D is described by the
partial differential equation:

−∇(κ(z)∇T (z)) = 500IA(z),

with boundary conditions T = 0 on the top boundary and ∇T n = 0 on the left, right and
bottom boundaries, where n denotes the vector normal to the boundary; A = (0.2, 0.3) ×
(0.2, 0.3) is a square domain within D and IA is the indicator function of A. The diffusion
coefficient, κ(z), is a lognormal random field defined by

κ(z) = exp[ak + bkg(z)],

Table 2 Benchmark settings for
Finite Element models Characteristic Truss Heat transfer

Input dimension 10 53

Input distributions Unif Norm

PCE degree 4 2

q-norm 0.75 0.75

Regressors number 176 107

Initial design size 176 108

Added noise std – –
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where g(z) is a standard Gaussian random field and the parameters ak and bk are such
that the mean and standard deviation of κ are μκ = 1 and σκ = 0.3, respectively. The
random field g(z) is characterized by an autocorrelation function ρ(z, z′) = exp(−‖z −
z′‖2/0.22). The quantity of interest, Y , is the average temperature in the square domain
B = (−0.3, −0.2) × (−0.3, −0.2) within D (see Fig. 3a).

(a)

(b)

(c)

Fig. 4 Sobol function. 3-dimensional input
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Fig. 5 Ishigami function. 3-dimensional input

To facilitate solution of the problem, the random field g(z) is represented using the
Expansion Optimal Linear Estimation (EOLE) method (see [41]). By truncating the EOLE
series after the first M terms, g(z) is approximated by

ĝ(z) =
M∑

i=1

ξi√
�i

φT
i Czζ .

In the above equation, {ξ1, . . . , ξM } are independent standard normal variables; Czζ is a

vector with elements C(k)
zζ = ρ(z, ζk), where {ζ1, . . . , ζM } are the points of an appropriately

defined mesh in D; and (�i, φi) are the eigenvalues and eigenvectors of the correlation
matrix Cζ ζ with elements C(k,�)

ζ ζ = ρ(ζk, ζ�), where k, � = 1, . . . , n. We select M = 53 in
order to satisfy inequality

M∑

i=1

�i/

n∑

i=1

�i ≥ 0.99.

The underlying deterministic problem is solved with an in-house finite-element analysis
code. The employed finite-element discretization with triangular T 3 elements is shown in
Fig. 3a. Figure 3b shows the temperature fields corresponding to two example realizations
of the diffusion coefficient.

Fig. 6 Environmental function. 4-dimensional input
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Experimental Setup For these finite element models, we assume that the set of candidate
design points  is

– a uniform grid in the 10-dimensional hypercube for the Truss model;
– LHS design with normally distributed variables in 53-dimensional space for the Heat

transfer model.

Experimental settings for all models are summarized in Table 2.

5.3 Results

Figures 4a, b, c, 5, 6, 7a, b, 8a, b show results for analytic functions. Figures 9 and 10 present
results for finite element models. We provide here mean errors, relative mean errors w.r.t the
proposed method and p-values to ensure that the difference of mean errors is statistically
significant.

In the presented experiments, the proposed method performs better than other considered
methods in terms of the mean error of estimated indices. Particularly note its superiority
over standard LHS approach that is commonly used in practice. The difference in mean
errors is statistically significant according to Welch’s t-test.

Comparison of Fig. 4a, b, c with different levels of additive noise shows that the proposed
method is effective when the analyzed function is deterministic or when the noise level is
small.

Fig. 7 Borehole function. 8-dimensional input
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Fig. 8 WingWeight function. 10-dimensional input

Because of robust problem statement and limited accuracy of the optimization, the algo-
rithm may produce duplicate design points. Actually, it’s a common situation for locally
D-optimal designs [33]. If the computational model is deterministic, one may modify the
algorithm, e.g. exclude repeated design points.

Although high dimensional optimization problems may be computationally prohibitive,
the proposed approach is still useful in high dimensional settings. We propose to generate

Fig. 9 Truss model. 10-dimensional input
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Fig. 10 Heat transfer model. 53-dimensional input

a uniform candidate set (e.g. LHS design of large size) and then choose its subset for the
effective calculation of Sobol’ indices using our adaptive method, see results for Heat trans-
fer model in Fig. 10 (note that due to computational complexity we provide for this model
results only for 2 iterations of the LHS method).

It should be noted that in all presented cases the specification of sufficiently accurate PCE
model (reasonable values for degree p and q-norm defining the truncation set) is assumed
to be known a priori and the size of the initial training sample is sufficiently large. If we
use an inadequate specification of the PCE model (e.g. quadratic PCE in case of cubic
analyzed function), the method will perform worse in comparison with methods which do
not depend on PCE model structure. In any case, usage of inadequate PCE models may lead
to inaccurate results. That is why it is very important to control PCE model error during
the design construction. For example, one may use cross-validation for this purpose [29].
Thus, if the PCE model error increases during design construction this may indicate that the
model specification is inadequate and should be changed.

6 Conclusions

We proposed the design of experiments algorithm for evaluation of Sobol’ indices from PCE
metamodel. The method does not depend on a particular form of orthonormal polynomials
in PCE. It can be used for the case of different distributions of input parameters, defining
the analyzed computational models.

The main idea of the method comes from metamodeling approach. We assume that the
computational model is close to its approximating PCE metamodel and exploit knowledge
of a metamodel structure. This allows us to improve the evaluation accuracy. All comes with
a price: if additional assumptions on the computational model to provide good performance
are not satisfied, one may expect accuracy degradation. Fortunately, in practice, we can
control approximation quality during design construction and detect that we have selected
inappropriate model. Note that from a theoretical point of view, our asymptotic consider-
ations (w.r.t. the training sample size) simplify the problem of accuracy evaluation for the
estimated indices.

Our experiments demonstrate: if PCE specification defined by the truncation scheme
is appropriate for the given computational model and the size of the training sample is
sufficiently large, then the proposed method performs better in comparison with standard
approaches for design construction.
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