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Abstract. Sensitivity analysis aims to identify which input parame-
ters of a given mathematical model are the most important. One of the
well-known sensitivity metrics is the Sobol sensitivity index. There is
a number of approaches to Sobol indices estimation. In general, these
approaches can be divided into two groups: Monte Carlo methods and
methods based on metamodeling. Monte Carlo methods have well-establi-
shed mathematical apparatus and statistical properties. However, they
require a lot of model runs. Methods based on metamodeling allow to
reduce a required number of model runs, but may be difficult for analysis.
In this work, we focus on metamodeling approach for Sobol indices esti-
mation, and particularly, on the initial step of this approach — design of
experiments. Based on the concept of D-optimality, we propose a method
for construction of an adaptive experimental design, effective for calcu-
lation of Sobol indices from a quadratic metamodel. Comparison of the
proposed design of experiments with other methods is performed.

Keywords: Active learning · Global sensitivity analysis · Sobol indices ·
Adaptive design of experiments · D-optimality

1 Introduction

Understanding the behaviour of complex mathematical models of complex physi-
cal systems is a crucial point for an engineering practice. Discovering knowledge
about the most important parameters of the model and learning parameters
dependency structure allow to understand better the system behind the model
and reveal the way to optimize its performance.

Given some mathematical model, the sensitivity analysis tries to find the
input parameters which variability has strong effect on the model output and
to evaluate this effect quantitatively; to determine how the parts of the model
interplay, how the model relates to the real world (see [1]). One of the common
metrics to evaluate the sensitivity is a Sobol sensitivity index. A lot of Monte
Carlo methods were developed for estimation of Sobol indices: direct Monte
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Carlo simulation, FAST [2], SPF scheme [3] and others. However, these methods
require a lot of runs of the analysed model and, therefore, are impractical for a
number of industrial applications.

On the other hand, metamodeling methods for Sobol indices estimation allow
to reduce the necessary number of model runs. In metamodeling approach, in
general, we replace the original model by an approximating metamodel (also
known as surrogate model or response surface) which is more computationally
efficient and has known internal structure. Approaches based on metamodels
consist of the following steps: generation of experimental design and training
sample, construction of metamodel and calculation of sensitivity indices using
the constructed model. Note that for the last step we can use both prediction
based on the constructed model and knowledge about its internal structure, e.g.
values of its estimated parameters.

This work is devoted to construction of adaptive experimental designs for
effective calculation of Sobol indices, i.e. calculation using the minimal number
of model runs.

There are several approaches related to the experimental design construction
for sensitivity analysis problems. Most of them are associated with a uniform (in
some sense) space filling design, e.g. Latin Hypercube, Sobol sequences and oth-
ers. These approaches are highly flexible, since specified structure of the analysed
model is not required for them. However, these designs, in general, are not opti-
mal in the sense of the fastest convergence of sensitivities to their true values.

Unlike space-filling designs, we try to construct an effective design and, there-
fore, we make assumptions on the model structure. We assume that the analysed
model is quadratic one with a white noise. Although we consider only this simple
case, the obtained results can be generalized to a wider class of models, including
Polynomial Chaos Expansions and others.

In the above assumptions, we investigate asymptotic behaviour (with respect
to the increasing design size) of the proposed estimate for sensitivity index based
on quadratic metamodel, prove its asymptotic normality and introduce an opti-
mality criterion for designs. Based on this criterion, we propose a procedure for
construction of an effective adaptive experimental design and compare it with
other designs.

The paper is organized as follows: in section 2, we review the definition of
sensitivity indices and describe their calculation based on quadratic metamodel.
In section 3, asymptotic behaviour of index estimate is considered. In section 4,
we introduce optimality criterion and propose the procedure for construction of
an adaptive experimental design. In section 5, experimental results are given.

2 Calculation of Sensitivity Indices Using Quadratic
Metamodel

2.1 Sensitivity Indices

Consider a mathematical model y = f(x), where x = (x1, . . . , xd) ∈ X ⊂ R
d is

a vector of (input) features, y ∈ R
1 is an output feature and X is a design space.
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The model is defined as a “black box”: its internal structure is unknown, but for
the selected design of experiment X = {xi}n

i=1 ∈ R
n×d we can get a set of model

responses and form a training sample L = {xi, yi = f(xi)}n
i=1, which allows us to

investigate properties of this model.
Let there be given some probability distribution on the design space X with

independent components, and let xΩ = (xi1 , . . . , xip) be some subset of input
features.

Definition 1. Sensitivity index of feature set xΩ is defined as

SΩ =
V(E(y|xΩ))

V(y)
, (1)

where E and V denote a mathematical expectation and a variance.

Remark 1. In this paper, we consider only sensitivity indices of type Si � S{i},
called first-order or main effect sensitivity indices.

Remark 2. In practice, in order to simulate the variability of input features if no
additional information is available, independent uniform distributions are often
used with the borders, obtained from physical considerations.

2.2 Metamodeling Approach

Consider calculation of sensitivity indices using the quadratic (meta)model. The
model can be represented as

y = α0 +
d∑

i=1

αixi +
d∑

i,j=1, i≤j

βijxixj , (2)

where αi and βij are coefficients of the model.
This model can be rewritten as y = ϕ(x)θ, where θ = (α1, . . . , αd, β12, . . . ,

β(d−1)d, β11, . . . , βdd, α0) ∈ R
q, q = d + d(d−1)

2 + d + 1 and

ϕ(x) = (x1, . . . , xd, x1x2, . . . , xd−1xd, x2
1, . . . , x

2
d, 1). (3)

As it was mentioned above, the variability of input features is often modeled
via uniform distribution on some interval. Without loss of generality, we assume
that xi ∼ U([−1, 1]), i = 1, . . . , d. Following [4], it is easy to calculate the
analytical expressions for sensitivity indices for the quadratic model (2) with
uniformly distributed features.

Proposition 1. Let xi be i.i.d. and xi ∼ U([−1, 1]) for i = 1, . . . , d, then the
sensitivity indices for the quadratic model (2) have the following form:

Sk =
1
3α2

k + 4
45β2

kk

1
3

∑d
i=1 α2

i + 1
9

∑d
i,j=1, i<j β2

ij + 4
45

∑d
i=1 β2

ii

, k = 1, . . . , d. (4)
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Assuming that the original model f(x) is well approximated by some quadratic
model, we can obtain an estimate for the sensitivity indexSi of originalmodel using
analytical expression for indices (4). Taking into account the results of Proposi-
tion 1, we can propose the following procedure for indices estimation:

1. Generate an experimental design X = {xi}n
i=1 ∈ R

n×d,
2. Simulate the original mathematical model on this design,
3. Form the training sample L = {xi, yi = f(xi)}n

i=1,
4. Construct a quadratic model based on this training sample,
5. Calculate sensitivity indices using estimated coefficients αi and βij .

In this paper, we focus on construction of an effective experimental design
for this procedure. Note that since Sk = ψ(α,β) is a nonlinear function of
the parameters α and β, then the existing approaches to the construction of
experimental designs, which are effective for estimating αi and βij (D-, IV-
criterion, see [8]), are not effective for the considered case.

3 Asymptotic Approximation

In this section, we consider asymptotic properties of our indices estimates if the
original model is quadratic with Gaussian noise:

y = ϕ(x)θ + ε, where ε ∼ N(0, σ2). (5)

Rewrite the formula (4) for sensitivity index using λ = Aθ:

Sk =
λ2

k + λ2
kk∑d

i=1 λ2
i +

∑d
i,j=1, i<j λ2

ij +
∑d

i=1 λ2
ii

k = 1, . . . , d, (6)

where λ = (λ1, . . . , λd, λ12, . . . , λ(d−1)d, λ11, . . . , λdd) ∈ R
q−1, q = d+ d(d−1)

2 +d+
1, normalization matrix A = [diag(

√
1/3, . . . ,

√
1/3,

√
4/45, . . . ,

√
4/45,

√
1/9,

. . . ,
√

1/9), zeros(q−1, 1)] ∈ R
(q−1)×q consists of a diagonal matrix and a column

of zeros; kk denotes the index of the term, corresponding to the squared value
of the k-th feature.

Let us assume that the training sample L = {xi, yi = f(xi)}n
i=1 is given,

where X = {xi}n
i=1 ∈ R

n×d is a design matrix. Let θ̂OLS be the Ordinary Least
Square estimate of the model parameter θ based on this training sample, then
the estimated index Ŝk has the form:

Ŝk =
λ̂2

k + λ̂2
kk∑d

i=1 λ̂2
i +

∑d
i,j=1, i<j λ̂2

ij +
∑d

i=1 λ̂2
ii

, k = 1, . . . , d, (7)

where λ̂ = Aθ̂OLS.
Using standard results for a linear regression (see [5]), it is not difficult to

prove the following proposition.
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Proposition 2. Let Ψ = ϕ(X) ∈ R
n×q be an extended design matrix for the

training sample in the case of quadratic model, the matrix ΨT Ψ is invertible,
then

V(λ̂) = V(Aθ̂) = A · V(θ̂) · AT = σ2A(ΨT Ψ)−1AT ,

Eλ̂ = Aθ = λ,

δ̂ = λ̂ − λ ∼ N (0, σ2A(ΨT Ψ)−1AT ).

Let t̂i � 2λiδ̂i + δ̂2i , t̂ij � 2λij δ̂ij + δ̂2ij , t̂ii � 2λiiδ̂ii +
+ δ̂2ii, i, j = 1, . . . , d, i ≤ j, and

t̂ = (t̂1, . . . , t̂d, t̂12, . . . , t̂(d−1)d, t̂11, . . . , t̂dd) ∈ R
q−1. (8)

Let us rewrite formula (7) for estimated sensitivity index in the form

Ŝk(t̂) =
λ2

k + λ2
kk + t̂k + t̂kk∑d

i=1(λ
2
i + t̂i) +

∑d
i,j=1, i<j(λ

2
ij + t̂ij) +

∑d
i=1(λ

2
ii + t̂ii)

.

The following theorem allows to establish asymptotic properties of this index
estimate while new examples are added to the training sample. In this theorem,
if some variable has index n, then this variable depends on the training sample
of size n.

Theorem 1. 1. Let new points are being added iteratively to experimental design
so that

1
n

ΨT
n Ψn −→

n→+∞ Σ, where Σ = ΣT , det Σ > 0. (9)

2. Let t = (t1, . . . , td, t12, . . . , t(d−1)d, t11, . . . , tdd) ∈ R
q−1,

S(t) = (S1(t), . . . , Sd(t)), where for k = 1, . . . , d

Sk(t) =
λ2

k + λ2
kk + tk + tkk

∑d
i=1(λ

2
i + ti) +

∑d
i,j=1, i<j(λ

2
ij + tij) +

∑d
i=1(λ

2
ii + tii)

.

G =

(
∂S

∂t

)∣
∣
∣
∣
t=0

, Λ = diag(λ1, . . . , λq−1) (10)

and holds
det(BΣ−1BT ) �= 0 (11)

where B = GΛA, then

√
n(Ŝn − S) D−→

n→+∞ N (0, 4σ2BΣ−1BT ). (12)

Proof. 1. From Proposition 2 we obtain
√

n δ̂n
D−→

n→+∞ N (0, σ2AΣ−1AT ), (13)

√
n δ̂2

n
D−→

n→+∞ 0. (14)

Using Slutsky’s theorem ([6]) we obtain from (13) and (14) for t̂:
√

n t̂ D−→
n→+∞ N (0, 4σ2Λ(AΣ−1AT )ΛT ). (15)
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2. Applying δ-method ([7]) on expansion of Ŝ(t̂) = (Ŝ1(t̂), . . . , Ŝd(t̂)) and
asymptotically small parameter t̂, we obtain required expression (12).

The next section provides a method for construction of an experimental
design for effective calculation of sensitivity indices.

4 Optimality Criterion and Procedure for Design
Construction

Taking into account the results of Theorem 1, the limiting covariance matrix of
the indices estimates depends on a) variance σ2, b) true values of coefficients of
quadratic model, defining B, c) experimental design, defining Σ.

In the above assumptions, the asymptotic formula (12) allows to evaluate the
quality of the experimental design. Indeed, generally speaking the less covariance
matrix norm ‖4σ2BΣ−1BT ‖ is, the less risk of sensitivity indices estimation is.
However, there are two problems on the way of using this formula to construct
effective designs. The first one relates to the choice of specific minimized func-
tional for the limiting covariance matrix. The second one refers to the fact that
we do not know true values of the coefficients of quadratic model, defining B;
therefore, we will not be able to accurately evaluate the quality of the design.

The first problem can be solved in different ways. A number of statisti-
cal criteria for design optimality (A-, C-, D-, I-optimality and others, see [8])
are known. In this work, we use D-optimality criterion. D-optimal experimental
design minimizes the determinant of the limiting covariance matrix. If the vec-
tor of the estimated parameters is normally distributed then D-optimal design
allows to minimize the volume of the confidence region for this vector.

The second problem is more complicated: the optimal design for estimation
of sensitivity indices depends on the true values of these indices, and it can be
constructed only if these true values are known.

There are several approaches to this problem. These approaches are usually
associated with either some assumptions about the unknown parameters, or
adaptive design construction (see [10]).

Particularly, the minimax-optimal criterion and the averaging-optimal (Baye-
sian optimal) criterion for design construction use the assumptions about the
unknown parameters and allow to achieve design that is optimal in average and
independent from the true values of the unknown parameters. However, in this
case there is a problem of the choice of an a priori set of possible values (in case
of minimax-optimal criterion) or an a priori distribution (in case of the averaged
optimal criterion) for the unknown parameters.

On the other hand, in case of adaptive designs, new points are generated
sequentially based on current estimate of the unknown parameters, which allows
to avoid a priori assumptions on these parameters. However, in this case there
is a problem with a confidence of the solution found: if on some step of design
construction parameters estimates are very different from their true values, then
the design, which is constructed on the basis of these estimates, may lead to
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new parameters estimates, which are also very different from the real values and
so on. In practice, during the construction of adaptive design, assumptions on
non-degeneracy of results can be checked at each iteration, and depending on
the results one can adjust the current estimates.

In this paper, we propose an adaptive method for construction of design
of experiment for calculation of sensitivity indices based on the asymptotic D-
optimal criterion (see an algorithm below). As an initial condition, we require
an original design to be non-degenerate, i.e. such that for an extended design
matrix at the initial moment it holds that det(ΨT

0 Ψ0) 	= 0. In addition, at each
iteration the non-degeneracy of the matrix, defining the minimized criterion, is
checked.

In Section 4.1 the details of the optimization procedure are given.

Goal: Construct experimental design for calculation of sensitivity indices
Parameters: initial n0 and final n numbers of points in the design; set of possible

design points Ξ.
Initialization:

– non-degenerate initial design X0 = {xi}n0
i=1 ⊂ Ξ;

– Φ0 =
∑n0

i=1 ϕ(xi)ϕ
T (xi);

– B0 = G0Λ0A, where G0 and Λ0 (10) are obtained using the initial estimates of the
coefficients of a quadratic model;

Iterations: for all i from 1 to n − n0:

– xn0+i = arg minx∈Ξ det
[
Bi−1(Φi−1 + ϕ(x)ϕT (x))−1BT

i−1

]

– Calculate values Gi, Λi and Bi = GiΛiA using current estimates of the quadratic
model coefficients

– Φi = Φi−1 + ϕ(xn0+i)ϕ
T (xn0+i)

Output: The design of experiment X = X0 ∪ Xadd, where Xadd = {xk}n
k=n0+1

4.1 Optimization Details

The idea behind the optimization procedure in the proposed algorithm is anal-
ogous to the idea of the Fedorov algorithm for construction of optimal designs
[9].

In order to simplify the optimization problem, we need several identities:

– Let A be some non-singular square matrix, u and v be vectors such that
1 + vT A−1u 	= 0, then

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (16)
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– Let A be some non-singular square matrix, u and v be vectors of appropriate
dimensions, then

det(A + uvT ) = det(A)(̇1 + vT A−1u). (17)

Let D = B(Φ + ϕ(x)ϕT (x))−1BT , then applying (16) and (17), we obtain

det(D) = det
[
BΦ−1BT − BΦ−1ϕ(x)ϕT (x)Φ−1BT

1 + ϕT (x)Φ−1ϕ(x)

]

= det
[
M − uvT

]
, (18)

where M = BΦ−1BT , u = BΦ−1ϕ(x)
1+ϕT (x)Φ−1ϕ(x)

, v = BΦ−1ϕ(x). Assuming that
matrix M is non-degenerate, we obtain

det(D) = det(M)(̇1 − vT M−1u) → min

The resulting optimization problem is

vT M−1u → max (19)

or
(ϕT (x)Φ−1)BT (BΦ−1BT )−1B(Φ−1ϕ(x))

1 + ϕT (x)Φ−1ϕ(x)
→ max

x∈Ξ
(20)

This problem is easier than the initial one and can be solved with one of the
standard methods of optimization.

5 Experimental Results

5.1 Description of Experiments

This section describes the comparison of the proposed approach with some mod-
ifications and with other approaches. In the experiments, we assume that the
set of possible design points Ξ is a uniform grid in the hypercube [−1, 1]d. At
first, we generated some non-degenerate random initial design, and then we used
various techniques to add new points iteratively. The sizes of the initial and final
designs were n0 = 30 and n = 60 points. Normalized empirical quadratic risk
was chosen as a metric of quality of the results, normalization coefficient was
equal to σ2/ni, where ni is a size of the design on the i-th iteration.

Methods for Testing. iterDoptSI: the proposed method; iterDopt: adding
a point maximizing the determinant of the information matrix |ΨT

n Ψn| → maxxn

(see [9]). The resulting design is in some sense optimal for estimation of the
coefficients of a quadratic model; rand: adding a random point from the set
of possible design points; randunif: adding a random point in the hypercube
[−1, 1]d.
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Fig. 1. Quadratic risk in case of different designs. 3-dimensional case

Fig. 2. Quadratic risk in case of different designs. 6-dimensional case

Additional Methods. iterDoptSI-exactCoeffs: variation of the proposed
method, in which the estimates of quadratic model coefficients, which are used
when adding next points, are replaced with their true values; iterDoptSI-
fixedCoeffs: variation of the proposed method, in which the estimates of
quadratic model coefficients, which are used when adding next points, are fixed
to their initial values.

5.2 Description of Results

Figures 1 and 2 demonstrate the performance of different approaches in the
case of 3 and 6-dimensional design space. They show the dependence of the
normalized quadratic empirical risk on the number of iteration related to adding
a new point to the design.

Thepresentedfigures illustrate that a) theproposedmethod iterDoptSIallows
to get better results than the methods iterDopt, rand and randunif; b) if sensi-
tivity indices are estimated accurately at initial moment, then the performances of
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the proposed method, iterDoptSI-exactCoeffs and iterDoptSI-fixedCoeffs
are approximately the same, so one can use simplified computational schemes in
which the evaluated indices are not updated at each iteration of Algorithm 4; c)
method iterDoptSI is more efficient at low dimensions.

6 Conclusion

We proposed an asymptotic optimality criterion and method for construction
of experimental design which is effective for calculation of sensitivity indices
in case of noisy quadratic model. Comparison with other designs shows the
superiority of the proposed method over competitors. The proposed approach
can be generalized to arbitrary polynomial metamodel and arbitrary continuous
distribution of input features. This will be the topic of our future works.
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