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According to [1]:

¢ The “effectiveness” of clustering methods is one the nine open issues Iin clustering;

¢ Adapting the clusterings to various disciplines can be considered as a trends in clustering.
 Therefore, in this talks, the objectives are to:

 improve the effectiveness of partitional clustering methods [2];

« adopt clustering methods to community detection in attributed networks (feature-rich) in [3, 4].

[1] Ezugwu, A.E., Ikotun, A.M., Oyelade, 0.0., Abualigah, L., Agushaka, J.O., Eke, C.l. and Akinyelu, A.A., 2022. A comprehensive survey of clustering
algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of
Artificial Intelligence, 110, p.104743.

[2] Shalileh, S., 2023. An Effective Partitional Crisp Clustering Method Using Gradient Descent Approach. Mathematics, 11(12), p.2617.
[3] Shalileh, S. and Mirkin, B., 2022. Community partitioning over feature-rich networks using an extended k-means method. Entropy, 24(5), p.626.

[4] Mirkin, B. and Shalileh, S., 2022. Community detection in feature-rich networks using data recovery approach. Journal of Classification, 39(3),

pp.432-462.[4]: An Extension of K-Means for Least-Squares Community Detection in Feature-Rich Network. ,
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 Clustering: partitioning the data set into partitions s.t. within-partition data points are as homogeneous as
possible & between-partitions data points are as heterogeneous as possible.

« Arecentreview [1], extends the well-accepted taxonomy of clustering methods and reviews the trends and

open challenges.

Crisp/Hard Mixture Resolving Agglomerative

[1] Ezugwu, A.E., Ikotun, A.M., Oyelade, O.0., Abualigah, L., Agushaka, J.O., Eke, C.l. and Akinyelu, A.A., 2022. A comprehensive survey
of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects.
Engineering Applications of Artificial Intelligence, 110, p.104743.
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« According to [1]:
¢ Adapting the clusterings to various disciplines considered as a trends;
¢ The “effectiveness” of clustering methods is one the nine open issues in clustering.

* [2] aims to improve the effectiveness of partitional clustering methods

[2] Shalileh, S., 2023. An Effective Partitional Crisp Clustering Method Using Gradient Descent Approach. Mathematics, 11(12),
p.2617.



. Consider a set of N data points X = {x,}*, for X; € R’, Vis the dimensionality of the data points.

e Goal: partition X into K crisp clusters s.t.
+ (i) the within-cluster data points are as homogeneous as possible and,

¢ (ii) the between-clusters data points are as heterogeneous as possible.
* Associate each cluster, S;, with the centroid in the ¢;:
* S = [s;}%_;: set of clusters,

* C = {c¢,},_,: set of centroids in feature space.



Generic clustering objective function:

K N
F(X,$,C) = ), ) fx,¢p) (1)

k=1 i=1

where f : X X C — R represents a (generic) distance function that will be applied to measure the distance
between the data point X; and the centroid ¢, .

There can be various strategies for optimizing this objective:
In the current research, we adopt gradient descent (GD).

Gradient is the direction of the steepest descent direction: named the core of our proposed model:

“Gradient Descent Clustering (GDC).”



 Update the notation, by reflecting the iterations, at 7-th iteration:

* set of clusters S = {S](f)}le’

* set of centroids C) = {cl(f)}f:l .

« GDC has three components:
1. cluster assignment criterion,
2. cluster update rule(s),

3. convergence condition.



* The cluster assignment criterion:

argminf(x;, ¢\") < f(x;, cj(.t)), Vji#k. (2)
k

 The update rule, in its vanilla form, VGDC:

1
¢V =l — a V. fix, ), (3)

¢ a represents the step size, and Vc,(f) is the gradient of the distance function, f, w.r.t the k-th centroid at
iteration 7 evaluated with the data point X..

« VSDC is prone to slow convergence, especially, at nearly flat surfaces;
 Accumulating momentum was proposed to tackle it, however, it may lead to overshoots at the valley floor;

 To avoid the overshooting, Nesterov accelerated momentum can be adopted (NGDC).
10



« NGDC update rule: to modify the gradient at the projected future position as follows:

vt = gy a Vo f(x; + BV, cl(f)), (4a)
C](€t+1) — C,(f) 4 V(t+1) . (4[9)

e where

* v ijs the momentum vector, with initial values of zero, which accumulates the gradient's history up
to iteration ¢

* S, € [0,1) is a coefficient, a hyper-parameter, that decays the momentum: our empirical studies:
value € [0.3,0.6] leads to superior results

11



 Noteworthy to add

1. Since at each iteration, we compute the gradients of f w.r.t the closet centroid of X;, thus, adding v
usually has a desirable impact: consider the ideal situation for which the data and the momentum
vectors point to the same direction in the (feature) space. Thus, this addition decreases the gradients,
which is desirable to avoid overshooting. Meanwhile, the first term in Eqgn. (4a) provides additional
momentum for going down the hill.

2. However, in less ideal circumstances, this addition may have less desirable influences, and this
negative influence becomes more exaggerated when some of the components of the gradient vectors
(or the momentum) have constantly high values: for which they negatively influence the update
direction.

3. The adaptive gradient optimization methods have been proposed to dull the effect of such components.
We postponed applying those methods to our future studies (the manuscript is under the review).
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Algorithm 1: Nesterov momentum Gradient Descent Clustering (NGDC)

Input: X: Data set; K: number of clusters.
Hyperparameters: a: step size; T: maximum number of iterations; T: the loss
function upper bound; B1: momentum decay coefficient.

Result: S = {s ,(ct) }_, % set of K binary cluster membership vectors;

C= {c,(ct) }_ % set of K centroids in feature space.
Initialize: Randomly initialize C and S.
fort € Range(T) do
for x; € X do

find k using Equation (2) and set i-th entry of the s ,(ct) to one;
update clusters using the Equation (4);

if Equation (1) < T then
| Halt.

end
end
end

 Python Source code: https://github.com/Sorooshi/NGDC method
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 Four algorithms from the literature

1. Agglomerative clustering: Murtagh, F. and Contreras, P., 2012. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), pp.86-97.. recursive hierarchical

2. K-means: Steinley, D., 2006. K-means clustering: a half-century synthesis. British Journal of Mathematical and
Statistical Psychology, 59(1), pp.1-34.: simultaneous K-clusters extraction using alternating optimization

3. GMM: MclLachlan, G.J. and Rathnayake, S., 2014. On the number of components in a Gaussian mixture model.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), pp.341-355.: A generalization of K-
means using EM algorithm and Gaussian Distributions.

4. Spectral: Von Luxburg, U., 2007. A tutorial on spectral clustering. Statistics and computing, 17, pp.395-416.: A set
of combined approaches based on the eigenvalue analysis of a graph's adjacency and K-means.
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 Normalized Mutual Information (NMI): Cover, T. & Thomas, J. Elements of Information Theory; John Wiley and Sons: Hoboken, NJ, USA, 2006.

+ Given two partitions: Cluster memberships S = {S,}+_, & Ground truth T = {T,}!_,
« Contingency table is a two-way table, s.t. its rows correspond to parts of S, and its columns, to parts of 1.

» The (k,])-thentryis n,; = |S, N T;|, the frequency of (k, ) co-occurrences.

L
[=1

K

my =S| and b= 3~

. Marginal row and marginal column are defined as a;, = ) n, = | 1;|

» The probability that an object picked at random falls into S, is a(k) = a,/N or into T} is b(l) = b,/N.

K L
The entropy of Sand T := H(S) = — Z a(k)log(a(k)) & H(T) = — Z b(Dlog(b(l)), respectively.
k=1 I=1

15



Normalized Mutual Information (NMI):

Mutual information (MI) between S and T is calculated using:

MI(S,T) = Z Zpkzlog(a(k) o

where p,; = n,,/N is the probability that an object picked at random falls into both S, & T, (k=12,...K; [ =12,...L).
Therefore, normalized mutual information is defined:

MI(S, T)
max(H(S), H(T))

NMI =

NMI € [0,1], the closer its values are to unity, the better the match between the clustering results and the
ground truth and vice versa.

16
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Table 2. The real-world dataset’s characteristics.

Dataset Points Features Clusters

Breast Tissue 106 9 6

Ecoli 336 7 8

Fossil 87 6 3

Glass 214 9 6

Iris 150 4 3

Leaf 340 15 30

Libras Movement 360 90 15

Optical Recognition 3823 62 10

Spam Base 4601 57 2

SesrDased 7494 16 10
Recognition

Wine 178 13 3

17



1. Determine the number of data points N, clusters K, and features V.

2. The clusters' cardinalities were determined randomly with two constraints:

I. no cluster should contain less than a pre-specified number of data points (we set this number to 30 in our
experiments),

ii. the number of data points in all clusters should sum to V.

3. We generated each cluster from a multivariate normal distribution:

i. with diagonal covariance matrix where the values derived uniformly at random from the range [0.05,0.1]
(they specify the cluster's spread), and

Il. means, i.e., each component of the cluster centroid are derived uniformly random from the range

(X [—1,+ 1], where { € Acontrols the cluster intermix: the smaller value of {, the higher the chance that
data points from a cluster fall within the spreads of other clusters.

18



Table 1. Synthetic datasets configurations to study the hyperparameters of proposed methods (six

configurations) and to validate and compare the methods under consideration (72 configurations):
each case consists of 10 repeats summing up to 780 datasets.

Generator Hyperparameter-Scrutinizing Comparison
Parameters Values Values
Clusters (K) 5,15 2,10, 20
Features (V) 10 2,5,10, 15, 20, 200

Data points (N) 2000 1000, 3000

Clusters intermix (() 0.35, 0.65, 0.95 04,0.8

19



Table 9. Comparison on real-world datasets with n_init = 10. The best results regarding NMI are

bold-faced.

K-Means GMM Spectral Agglomerative NGDC
Breast Tissue 0.515 + 0.020 0.381 + 0.047 0.462 + 0.030 0.419 + 0.000 0.549 + 0.017
Ecoli 0.599 + 0.010 0.388 + 0.061 0.559 + 0.007 0.667 + 0.000 0.630 + 0.024
Fossil 1.000 + 0.000 0.687 + 0.242 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
Glass 0.338 + 0.018 0.331 + 0.035 0.277 + 0.001 0.294 + 0.000 0.387 + 0.031
Iris 0.742 + 0.000 0.629 + 0.032 0.658 + 0.000 0.784 + 0.000 0.766 + 0.020
Leaf 0.648 + 0.010 0.589 + 0.013 0.622 + 0.017 0.621 + 0.000 0.653 + 0.009
Libras Movement 0.597 + 0.015 0.197 + 0.019 0.563 + 0.016 0.563 + 0.000 0.602 + 0.012
Optical Recognition 0.761 + 0.011 0.387 + 0.068 0.699 + 0.001 0.733 + 0.000 0.774 + 0.019
Spam Base 0.085 + 0.115 0.080 + 0.043 0.004 + 0.000 0.001 + 0.000 0.259 + 0.003
Pen-Based Recognition 0.692 + 0.006 0.691 + 0.034 0.692 + 0.000 0.635 = 0.000 0.708 = 0.010
Wine 0.846 + 0.006 0.332 + 0.107 0.909 + 0.000 0.018 + 0.000 0.858 + 0.012

* NGDC won eight out of 12 competitions.

 Agglomerative is the second winner.

20

It has significant edge over the competitors at Breast Tissues, Glass, and Spam Base.
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Table 10. Comparison on synthetic datasets with 1000 data points and two clusters. The best results  apJe 11. Comparison on synthetic datasets with 3000 data points and two clusters. The best results

4 4 K-Means GMM Spectral Agglomerative NGDC v 4 K-Means GMM Spectral Agglomerative NGDC
, 040 0257+0212 00410050  0.255+0.215  0.008 +0.011 0.284 + 0.200 , 040 03060200 01680112  0.306+0.199  0.0010.001 0.313 + 0.201
0.80 0487 +0.286 0.075+0.119 0484 +0.282  0.180 + 0.354 0.499 + 0.286 080 0584 +0261 0107+0.104 0574+0.255 0.249 + 0.381 0.589 + 0.260
5 040 0.538+0.156 0.044+0.059 0537 +£0.159  0.064 + 0.184 0.523 + 0.195 040 0395+0230 0033+0047 0391 +0228  0.002 + 0.004 0.403 + 0.224
0.80 0.876+0.137  0.106 +0.087  0.877£0.138  0.581 + 0.474 0.837 + 0.201 > 080 084440140 033940276 0.858+0.135  0.463 = 0.465 0.852 + 0.141
10 040 0562+0.151 0415+0.145  0.627 £0.138  0.006 = 0.007 0.685 + 0.175 10 040 0.750+0.165 0.015+0.014 0.748+0.165  0.089 + 0.264 0.757 + 0.165
0.80 0987 +£0.033 0976 +0.066  0.990 +0.024  0.895 + 0.295 0.993 + 0.009 0.80 0.969+0.064 0.028+0.030 0.970+0.062 0.884 + 0.294 0.972 + 0.061
15 040 0.869+0.072 0.754+0.294  0.883+0.063 0.268 + 0.399 0.882 + 0.066 15 040 0.835+0.111 0.018+£0.014 0.834+0.109  0.001 = 0.001 0.843 + 0.108
0.80 1.000+0.000 0902 +0.293  1.000+£0.000 0.999 + 0.003 1.000 £ 0.000 0.80 1.000+0.000 0.118+0.295 0.999 +£0.002  0.998 + 0.004 1.000 + 0.000
20 040 0951+0.039 0310+0.434  0.950+0.037  0.281 +0.428 0.958 + 0.033 20 040 0918+0.069 0.844+0.283 0.926 £0.061  0.095 + 0.280 0.922 + 0.073
0.80 1.000+0.000 1.000 +0.000 0.993 +£0.008 0.997 +0.010 1.000 + 0.000 0.80 0.999 +£0.004 1.000+0.000 0.994 +0.007  1.000 + 0.000 0.999 + 0.004
200 040  1.000 £+ 0.000 0.000 +£0.000 0.992+0.016  1.000 = 0.000 0.600 + 0.490 200 040 1.000+0.000 0.001 +£0.001  1.000 =0.000 1.000 * 0.000 1.000 + 0.000
0.80 1.000+0.000 0.001+0.001 1.000 + 0.000 1.000 £ 0.000 1.000 + 0.000 0.80 1.000+0.000 0.000 +0.000  1.000 +0.000  1.000 + 0.000 1.000 + 0.000

 NGDC dominates these tables

21



NATIONAL RESEARCH
k »

Table 12. Comparison on synthetic datasets with 1000 data points and ten clusters. The best results Table 13. Comparison on synthetic datasets with 3000 data points and ten clusters. The best results
regarding NMI are bold-faced. regarding NMI are bold-faced.

Vv 4 K-Means GMM Spectral Agglomerative NGDC Vv 4 K-Means GMM Spectral Agglomerative NGDC
5 040 0.207+0.040  0.157+0.045  0.193+0.039  0.192+0.039 0.212 + 0.040 ’ 040 0.200+0.031  0.158 +0.041  0.193 +£0.029  0.189 + 0.035 0.204 £ 0.033
0.80 0432+0.041 0321+0.077 0.401+0.030 0.433 +0.038 0.438 + 0.043 0.80 0.410+0.052 0.346+0.081 0.381+0.046  0.415 £ 0.062 0.413 + 0.052
5 040 0.350+0.049 0.200+0.045 0.285+0.026  0.199 + 0.081 0.358 + 0.046 5 040 0.348+0.054 0.199+0.056 0.283+0.041  0.169 +0.101 0.355 + 0.053
0.80 0.753+0.044 0.607 +0.077  0.641 +0.061  0.711 + 0.063 0.751 + 0.042 0.80 0.716 +0.057  0.685+0.138  0.604 +0.055  0.743 £ 0.062 0.730 + 0.066
10 040 0.549+0.077 0.283+0.072  0.460+0.077  0.251 +0.153 0.546 + 0.075 10 040 0579+0.046 0327 +0.132 0.484+0.049  0.032 +0.045 0.581 £ 0.042
0.80 0.957+0.029 0.765+0.083  0.922+0.037  0.925 + 0.027 0.956 + 0.025 0.80 0920+0.035 0.892+0.041 0.877+0.042  0.901 +0.045 0.927 + 0.021
15 040 0.757+0.050 0.338+0.057 0.677 +0.075  0.363 + 0.196 0.739 + 0.045 15 040 0.714+0.051  0552+0.113  0.616 +0.050  0.178 +0.218 0.727 + 0.057
0.80 0.940+0.030 0.666 +0.051  0.991£0.011  0.985 + 0.023 0.948 + 0.031 0.80 0.935+0.031 0909 +0.078 0.967 +0.039  0.990 £ 0.008 0.922 + 0.034
20 040 0.862+0.034 0316+0.016 0.804+0.031  0.566 +0.125 0.843 + 0.035 20 040 0.852+0.031 0.635+0.067 0.784+0.036  0.352 +0.263 0.845 + 0.036
0.80 0.993+0.015 0.676 +0.051  0.999 £0.002  0.999 + 0.002 0.970 + 0.014 0.80 0956 +0.025  0.834+0.086  0.999 £0.001  0.998 + 0.001 0.967 + 0.019
200 040 0.971+0.027 0.023+0.003  1.000 £ 0.000  1.000 + 0.000 0.916 + 0.020 200 040 0979+0.014 0.011+0.001 1.000+0.000 1.000 £ 0.000 0.940 + 0.018
0.80 0.961+0.027 0.023+0.003  1.000 £0.000  1.000 + 0.000 0.930 + 0.027 0.80 0974+0.022 0.015+0.003  1.000 £0.000  1.000 £ 0.000 0.970 + 0.008

* NGDC and Agglomerative are the winners

* Refer to the paper for more: https://www.mdpi.com/2227-7390/11/12/2617
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Conclusion:

1. Applied GD to least-squares criterion for clustering in feature space

2. Empirically validated and compared the performance of NGDC with four benchmark algorithms on 12
real-world and 780 synthetic data.

3. NGDC appeared to be the wining algorithm of the current research
Future work:

1. NGDC is sensitive to seed initialization: proposing a technique to reduce this sensitivity or initialization
of the seeds more effectively

2. NGDC uses fixed step size >> components with constantly high gradients may have less desirable
impacts: using “adaptive moment estimation (ADAM)” update rule to tackle the issues

3. Conducting more experiments using different distance metrics, like Canberra distance.

23
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Thank you!

Soroosh Shalileh

sr.shalileh@gmail.com
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Clustering Feature-rich Networks

using Data Recovery Approach

Dr. Soroosh Shalileh
Prof. Boris Mirkin.



* Introduction and terminology

* General models

 One-by-One clustering method (SEFNAC)
 EXxperiments settings

« EXperiments results 1

 Simultaneous clustering method (KEFRIiN)
« Experiments results 2

* Future work
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 Feature-rich network: a graph with a set of features associated with its nodes.
« Community: a relatively dense group of entities with similar feature values.
 Goal: to extract clusters using networks links and nodes features simultaneously.

 Application: Medicine, Sociology, Text Summarisation, CS, Etc.
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L -
-.-------'
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Cluster 3
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« Consider a feature-rich network at the nodes, A={P, Y}, over entity set “I”; “I” is a set of network nodes of cardinality |I|=N.

. P=(py € RY*N Matrix of mutual link weights between nodes“i” & “j” (i = 1,2,...,N);

- Y=(y,) € RNV Matrix of feature values y;, fornodes i = 1,2,....N and over features v = 1,2,...,V.

Feature model: y, = Z CoSik /i, (AN)
k

Network (similarity) models: 1) p; = Z MSiuSix + € (AS);
k

« 5, = (5;,): Binary N-dimensional cluster membership vectors (the clusters are crisp);
» (¢, = (¢},): V-dimensional cluster centroids; /. Positive network intensity weight.

¢ €, ;- Residuals (Errors) to be minimised; k=1,..., K represent the number of clusters

28



 There can be various strategies for optimization of the (aforementioned) criterion.

e we adopt:
o A) Sequentially cluster extraction strategy (one cluster at the time).

© B) Simultaneous cluster extraction strategy (K clusters at the time).

 The former strategy: first, was proposed in “individual clusters Mirkin 1976 (in Russian), Mirkin JClas
1987, Further Amorim & Mirkin PatRec 2012;

 The latter strategy: K-Means is one the most popular instance.

29



 Pursuing the least-squares principles: criteria: minimise:

K K
Fys (Ao s 1) = p Z Z Vi = CSi)” + & Z Z (Djj — ﬂkSiijk)z

k=1 i,y k=1 i,j

» w.r.t unknown membership vectors s, , cluster centroids ¢, and intensity weight 4,

« Where p , £ are user-defined constants, (p =& = 1)

30



. One by one (sequential) strategy: Search one cluster S ,c , 1 | /1]- at a time: (just remove the index k)

Fas (4, 55,¢,) =p Z O = €5)" + & Z (Pyj — /151'5]')2
i,y ij

 Applying first order optimality and little algebraic manipulation:

B Z,.yivsi_ B zi,jpllisisj

C, ;A .
’ ‘S‘ Zisiz Zj sz

31



. Expanding the Eqns. and optimal ¢, and 4 | /1]- and substituting them below implies:

Fas(s) =p Z yl% —2p Z YiCySi T Z C\% Z Si2 T ézpi]z — 264 Zpljsisj % Z Si2 2 SJ'2
I,V R % i ,] l,] l J

. 1Y) = Z yl% and 7(P) = Z pijz. : are quadratic scatters of Y and P, respectively. Thus:

1,V l,]

A. Under AS: F,(S) = pT(Y) + ET(P) — G,g; Where G =p | S] Z cv2 + A Zpijsisj
1% l,]

» Therefore, minimising the residuals is equivalent to maximising G(S) i.¢e.G44(S)

32



» Maximising G(S) i.e.G,4(S) : By optimally adding nodes one by one: Feature-rich Network Addition
Clustering (FNAC). Using FNAC iteratively and sequentially for partitioning: SEFNAC.

« FNAC: starts from a random seed “i” forming a singleton cluster S = {i}.

« At any current S, considers every element ;] € [ — §; select that “;” at which the increment of contribution
G(s) is maximal. If this maximum is positive, then “;” is added to “S,” and the module runs again.

* If the maximum is negative or zero or no unclustered entity has remained, the FNAC halts and outputs
uS_u

 Seed Relevance Check: Remove the seed from the found cluster “S.” If the removal increases the cluster
contribution, this seed is extracted from the cluster.

33



« SEFNAC:

1. Initialisation. Define J = I, the set of entities to which FNAC applies at every iteration, and set cluster
counter k = 1.

2. Define matrices Y; and P; as parts of Y and P restricted at /. Apply FNAC at J/, denote the output
cluster § as $,,

3. Redefine J by removing all the elements of §, from it (i.e. / = J — §;). Check whether thus obtained J is
empty or not:

If yes, stop. Define the current k as K and output S, for k = 1,....K. If not, add | to &, and go to step
2.

Mirkin, B. and Shalileh, S., 2022. Community Detection in Feature-Rich Networks Using Data Recovery
Approach. Journal of Classification, pp.1-31.

34



 Four algorithms from the literature

1. CESNA: J. Yang, J. McAuley, and J. Leskovec. 2013. Community detection in networks with node attributes. In
IEEE 13th International Conference on Data Mining. IEEE Computer Society, Washington DC, USA, 1151-1156.
(Author of SNAP Lib.): Probabilistic Generative Model

2. SIAN: M.E. Newman and A. Clauset. 2016. Structure and inference in annotated networks. Nature
Communications 7 (2016), 11863. (Authors of Modularity): Bayesian statistical inference >> Generative Network Model

3. DMoN: A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Muller. 2020. Graph clustering with graph neural networks.
arXiv preprint (2020). arXiv:2006.16904. (Google data scientists): Graph Convolutional Neural Networks

4. EVA: S. Citraro and G. Rossetti. 2020. Identifying and exploiting homogeneous communities in labeled networks.
Applied Network Science 5, 1 (2020), 1-20. (KDD Researchers): Heuristic: Modularity & Purity
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Adjusted Rand Index (ARIl): Proposed in: L. Hubert and P Arabie. 1985. Comparing partitions, Journal of
Classification, 2, 1 (1985), 193-218.

Given two partitions: Cluster memberships S = {S,};_,; Ground truth T = {T,}}_

Contingency table is a two-way table, such that its rows correspond to parts of S, and its columns, to parts
of 1.

The (k,[)-th entry is n,;, = | S, N T;|, the frequency of (k, [) co-occurrences.

L
[=1

2 (%) -z () ZC)v(E)
U (9)+Z, -1z (%) = v

The closer to unity the better.

K
ny =S| andby= 2, ny =T

Marginal row and marginal column are defined as a; = Z 1

ARI(S,T) =

36



TABLE 4.1: Real world datasets under consideration. Symbols N, E, and F stand for the number
of nodes, the number of edges, and the number of node features, respectively.

NATIONAL RESEARCH

Name Nodes Edges Features Number of Communities Ground Truth
Malaria HVR6 307 6526 6 2 Cys Labels
Lawyers 71 339 18 6 Derived out of office and status features
World Trade 80 1000 16 5 Structural world system in 1980 features
Parliament 451 11646 108 7 Political parties
COSN 46 552 16 2 Region
Cora 2708 5276 1433 7 Computer Science research area
SinaNet 3490 30282 10 10 Users of same forum
Amazon Photo 7650 71831 745 8 Product categories

Eight popular real-world data sets
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 Small-size networks: 200 nodes; Five communities; Five features

e Medium-size networks: 1000 nodes; 15 communities; 10 features
« 8 settings, each setting has 10 repeats:
» Setting:

© Links: within-cluster p = {0.7,0.9}, between-cluster g = {0.3,0.6}

O Features:
O within clusters: quantitative: Gaussian, random center from a[—1, + 1] where a € {0.7,0.9}

°© : categorical: random center, ¢ = {0.7,0.9}

 Total number of synthetic data sets: 800
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Table 16 Comparison of CESNA, SIAN, EVA and SEFNAC on real-world datasets; average values of ARI and NMI are presented over 10 random initializations. The best

results are shown in boldface

NATIONAL RESEARCH
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CESNA SIAN EVA SEFNAC

ARI NMI ARI NMI ARI NMI ARI NMI

Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)
HRV6 0.20 (0.00) 0.37 (0.00) 0.39 (0.29) 0.39 (0.22) 0.036 (0.004) 0.113 (0.006) 0.45 (0.14) 0.62 (0.05)
Lawyers 0.28 (0.00) 0.48 (0.00) 0.59 (0.04) 0.71 (0.04) 0.159 (0.028) 0.175 (0.026) 0.63 (0.06) 0.65 (0.05)
World Trade 0.23 (0.00) 0.59 (0.00) 0.55 (0.07) 0.77 (0.03) —0.003 (0.000) 0.000 (0.000) 0.23 (0.03) 0.58 (0.04)
Parliament 0.25 (0.00) 0.52 (0.00) 0.79 (0.12) 0.82 (0.07) 0.005 (0.001) 0.001 (0.004) 0.28 (0.01) 0.47 (0.01)
COSN 0.44 (0.00) 0.45 (0.00) 0.43 (0.05) 0.61 (0.03) —0.004 (0.000) 0.004 (0.000) 0.50 (0.11) 0.64 (0.06)
SinaNet 0.09 (0.00) 0.22 (0.00) 0.17 (0.02) 0.21 (0.02) 0.001 (0.002) 0.009 (0.002) 0.21 (0.03) 0.29 (0.03)

« SEFNAC wins the HVRG6, Lawyers, COSN and SinaNet competitions.

* SIAN wins the competition for PARLIAMENT, and takes second place in the LAWYERS competition. On average, it shows
better performance than what we observed over synthetic data.

« CESNA except for COSN loses its efficiency. EVA again performs poorly.
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Table 7 Comparison of CESNA, SIAN, EVA and SEFNAC on small-size synthetic datasets with categorical features. The best results are highlighted in boldface
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Setting / Alg. CESNA SIAN EVA SEFNAC
P.q, € ARI NMI ARI NMI ARI NMI ARI NMI
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)
0.9,0.2,09 0.95 (0.09) 0.97 (0.05) 0.43 (0.27) 0.47 (0.83) 0.196 (0.072) 0.245 (0.040) 0.87 (0.02) 0.81 (0.02)
0.9,0.2,0.7 0.90 (0.12) 0.94 (0.07) 0.63 (0.25) 0.45 (1.15) 0.207 (0.057) 0.257 (0.024) 0.56 (0.06) 0.55 (0.04)
09,04, 0.9 0.97 (0.02) 0.95 (0.03) 0.50 (0.29) 0.14 (1.40) 0.221 (0.065) 0.287 (0.043) 0.85 (0.02) 0.78 (0.03)
0.9,04, 0.7 0.96 (0.08) 0.96 (0.05) 0.46 (0.27) 0.64 (0.39) 0.260 (0.087) 0.320 (0.043) 0.52 (0.05) 0.54 (0.03)
0.7,0.2,0.9 0.95 (0.03) 0.94 (0.03) 0.57 (0.23) 0.60 (0.62) 0.136 (0.051) 0.178 (0.032) 0.84 (0.03) 0.79 (0.03)
0.7,0.2,0.7 0.82 (0.15) 0.88 (0.08) 0.64 (0.07) 0.80 (0.04) 0.116 (0.039) 0.166 (0.028) 0.53 (0.06) 0.52 (0.05)
0.7,04,09 0.75 (0.11) 0.77 (0.09) 0.27 (0.22) 0.04 (1.44) 0.167 (0.037) 0.234 (0.040) 0.82 (0.07) 0.77 (0.05)
0.7,04, 0.7 0.50 (0.09) 0.59 (0.07) 0.44 (0.30) 0.20 (1.34) 0.131 (0.047) 0.168 (0.058) 0.49 (0.10) 0.51 (0.07)

« CESNA wins seven out of eight competitions.
* SIAN performs moderately acceptable.

 EVA performs poorly. Reasons: the assumption over sparsity of networks; inappropriate feature models(EVA); stocking in local optima

« SEFNAC also performs acceptably.
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Table 8 Comparison of CESNA, SIAN, EVA and SEFNAC on medium-size synthetic datasets with categorical attributes. Two best results are highlighted in boldface

Setting / Alg. CESNA SIAN EVA SEFNAC
D, q, € ARI NMI ARI NMI ARI NMI ARI NMI
Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)
0.9,0.2,0.9 0.85 (0.03) 0.91 (0.02) 0.03 (0.08) 0.06 (0.19) 0.080 (0.047) 0.179 (0.031) 0.87 (0.07) 0.90 (0.04)
0.9,0.2,0.7 0.79 (0.05) 0.90 (0.02) 0.03 (0.09) 0.06 (0.19) 0.105 (0.077) 0.193 (0.051) 0.89 (0.06) 0.90 (0.05)
09,04, 0.9 0.74 (0.08) 0.85 (0.04) 0.02 (0.05) 0.05 (0.15) 0.155 (0.043) 0.329 (0.048) 0.85 (0.12) 0.88 (0.07)
0.9,04,0.7 0.66 (0.08) 0.80 (0.04) 0.00 (0.00) 0.00 (0.00) 0.145 (0.075) 0.299 (0.055) 0.65 (0.14) 0.74 (0.07)
0.7,0.2,09 0.71 (0.10) 0.85 (0.04) 0.14 (0.17) 0.27 (0.33) 0.067 (0.031) 0.174 (0.039) 0.85 (0.05) 0.88 (0.04)
0.7,0.2,0.7 0.60 (0.10) 0.80 (0.04) 0.18 (0.21) 0.21 (0.31) 0.061 (0.032) 0.156 (0.031) 0.67 (0.16) 0.78 (0.09)
0.7,04, 09 0.45 (0.09) 0.67 (0.06) 0.01 (0.04) 0.04 (0.11) 0.088 (0.040) 0.189 (0.049) 0.71 (0.11) 0.76 (0.09)
0.7,04, 0.7 0.22 (0.04) 0.54 (0.03) 0.01 (0.04) 0.04 (0.13) 0.093 (0.024) 0.198 (0.034) 0.37 (0.06) 0.54 (0.07)

« CESNA wins one out of eight competitions.
* SIAN and EVA perform poorly.

« SEFNAC wins the competition.
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« Consider a feature-rich network at the nodes, A = {P, Y}, over entity set “I”;
« “]” is a set of network nodes of cardinality |/| = V.

. P =(p;) € R™" Matrix of mutual link weights between nodes*i” & “j”;

« Y=(y;,) € RY*Y Matrix of feature values y;, fornodes i = 1,2,....N and over features v = 1,2,..., V.

We model feature part as: y,, = Z CovSik + Jiv
k

We model network part as: p;; = Z ﬂkjS,-k t ¢
k

« k=1,..., K Number of clusters; s, = (s;.): Binary N-dimensional cluster membership vectors (crisp clusters);

« ¢ = (¢y,): V-dimensional cluster centroids; 4, = (4;;): N-dimensional cluster centroids vector in network data space;

. ¢; , [+ Residuals (Errors) to be minimised; .
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 The least-squares criterion: minimise:

K

K
Fan (A Spo ) = p Z Vi = Z CioSip)” + & Z (Dij — Z ’ijsik)z
i.j k=1

Y k=1

» w.r.t unknown membership vectors s, , cluster centroids ¢, and A, in feature data space and network
links space

« Where p , £ are user-defined constants, (p =& = 1)
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- Simultaneous strategy: Search for all K clusters s , ¢;,, , 4;; Simultaneously:

K

K
F(Sixs Cps Agj) = P Z Viy — Z CruSi)” + & Z (P — Z /ijsik)z
i.j k=1

Y k=1

* Applying first order optimality and little algebraic manipulation:

Zi Yivdik z,- pijSik
| Sk | | Sk |
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- Expanding the criterion and optimal ¢, , and /ij and substituting them below implies:

Fisd =p( ) Y2 =2 Y e D Ousid+ D Y RIS +E p2=2) D 4 Y (pysid + ), Y 421D
Ay k v l k v l,] k j l k j

CTY) = Z y2 and T(P) = Z p; : are quadratic scatters of } and P, respectively.

1,V l,]

» Breaking down F(s;,) = F'y + F, where, in respect, each represents the
residuals of ¥ & P

L Fy=p(T(V) = Y IS and Fp = ET(P) — Y 321D
k,v k,j
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- Breaking down F(s;,) = Fy + F, where, in respect, each represents the
residuals of ¥ & P

_ Thus: Fy = p(T(Y) — Z c,gv |5, |) = pd(cy, y;.) and similarly, ), = E(T(P) — Z /1,3]. 1S, 1) = &d(4, p;.)
k,v k,j

 I'y & F) are indeed Euclidean distance; though it can be replaced with Cosine distance to tackle the curse of
dimensionality (or any other distances metrics)

 To minimise our proposed clustering criterion, we extend the well-known K-Means algorithm, and we name it
KEFRIN.

A. KEFRiNe: represents the case when the Euclidean distance is being applied: F(s;,) = pd (¢, y;) + &d, (A, p;.)

B. KEFRIiNc: represents the case when the Cosine distance is being applied: F(s;) = pd (¢, y,) + &d (A, p;.)

C. KEFRiNm: represents the case when the Manhattan distance is being applied: F'(s;) = pd _(c.,y.) + &d, (A4, p..)
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1. Initialisation: choose the number of clusters, K; initialise seed centroids: C = {(:K}f=1 &\ = {/IK}le, and empty
cluster lists S = {S;}_;-

2. Clusters update: given 2 X K centroids: K centroids in the feature space, and K centroids in the network space:
determine clusters § = {S,iC }le with minimum distance rule: either with d,(.)ord.(.)ord (.):

KEFRiNe:d,(y;., ¢;) + d (p;., A,); KEFRiNc: d (y;.,c,) +d.(p;.,A); KEFRINm:d, (y;.,c,) +d, (p;., A;)

3. Stop-condition: check whether S = S. If yes, stop the clustering procedure,
S= {5}, C={c}e,, A= {1}, Otherwise, change S with S

4. Centroids update: Given clusters § = {Sk},If:l calculate within-cluster means in the feature space and the network
space and go to Step 3.

Shalileh, S. and Mirkin, B., 2022. Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method.
Entropy, 24(5), p.626.
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Table 9. Comparison of CESNA, SIAN, DMoN, SEANAC, KEFRiNe and KEFRiNc algorithms with
Real-world data sets; average values of ARI are presented over 10 random initializations. The best

results are highlighted in bold-face; those second-best are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm
HRV6 0.20(0.00) 0.39(0.29) 0.64(0.00) 0.49(0.11) 0.34(0.02) 0.69(0.38) —0.056(0.004)
Lawyers 0.28(0.00) 0.59(0.04) 0.60(0.04) 0.60(0.09) 0.43(0.13) 0.44(0.14) 0.415(0.085)
World Trade 0.13(0.00) 0.10(0.01)) 0.13(0.02) 0.29(0.10) 0.27(0.17) 0.40(0.11) 0.048(0.013)
Parliament 0.25(0.00) 0.79(0.12) 0.48(0.02) 0.28(0.01) 0.15(0.09) 0.41(0.05) —0.035(0.001)
COSN 0.44(0.00) 0.75(0.00) 0.91(0.00) 0.72(0.02) 0.65(0.18) 1.00(0.00) 0.493(0.056)
Cora 0.14(0.00) 0.17(0.03) 0.37(0.04) 0.00(0.00) 0.00(0.00) 0.21(0.01) —0.000(0.000)
SinalNet 0.09(0.00) 0.17(0.02) 0.28(0.01) 0.21(0.03) 0.31(0.02) 0.34(0.02) 0.001(0.000)
Amazon Photo 0.19(0.000) NIA 0.44(0.04) NIA 0.06(0.01) 0.43(0.06) 0.030(0.001)

« CESNA except for COSN loses its efficiency.

« SEFNAC wins the Lawyers, and takes second place in WT competition.

« KEFRINc and DMoN are close competitors and the dominating the table.

 SIAN wins the competition for PARLIAMENT, and takes second place in the LAWYERS competition. On average, it shows better performance than
what we observed over synthetic data.
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Table 6. Comparison of CESNA, SIAN, DMoN, SEANAC and KEFRIiN algorithms on small-size
synthetic networks with categorical features: The average and standard deviation of ARI index over
10 different data sets. The best results are shown in bold-face and the second-best ones are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNc KEFRiNm
0.9,0.3,0.9 1.00(0.00) 0.554(0.285)  0.709(0.101)  0.994(0.008)  0.886(0.116)  0.922(0.119)  0.895(0.173)
0.9,0.3,0.7  0.948(0.105)  0.479(0.289)  0.380(0.107)  0.974(0.024)  0.835(0.138)  0.819(0.142)  0.891(0.135)
0.9,0.6,09  0.934(0.075)  0.320(0.255)  0.412(0.109)  0.965(0.013)  0.963(0.072)  0.726(0.097)  0.868(0.202)
0.9,0.6,0.7  0.902(0.063)  0.110(0.138)  0213(0.051)  0.750(0.117)  0.694(0.096)  0.711(0.145)  0.791(0.191)
0.7,0.3,09  0.965(0.078)  0.553(0.157)  0.566(0.105)  0.975(0.018)  0.788(0.117)  0.877(0.130)  0.937(0.124)
0.7,03,0.7  0.890(0.138)  0.508(0.211)  0.292(0.077)  0.870(0.067)  0.836(0.115)  0.795(0.117)  0.824(0.191)
0.7,0.6,09  0.506(0.101)  0.047(0.087)  0.345(0.064)  0.896(0.067)  0.762(0.169)  0.834(0.132)  0.379(0.174)
0.7,0.6,0.7  0.202(0.081)  0.030(0.040)  0.115(0.058)  0.605(0.091)  0.574(0.142)  0.540(0.107)  0.184(0.098)

« CESNA wins three out of eight competitions.

 SIAN and DMoN perform moderately acceptable.

« SEFNAC wins the five remaining settings.

« KEFRIN methods perform acceptably.
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Table 7. Comparison of CESNA, SIAN, DMoN, SEANAC, and KEFRiN algorithms over medium-size
synthetic networks with categorical features; average and standard deviation of ARI index over
10 different datasets. The best results are shown in bold-face and second ones are underlined.

Dataset CESNA SIAN DMoN SEANAC KEFRiNe KEFRiNCc KEFRiNm
0.9,0.3,09  0.894(0.053)  0.000(0.000)  0512(0.137)  1.000(0.000)  0.508(0.205)  0.724(0.097)  0.863(0.089)
0.9,0.3,0.7  0.849(0.076)  0.000(0.000)  0.272(0.073)  0.996(0.005)  0.777(0.129)  0.742(0.182)  0.762(0.184)
0.9,0.6,09  0.632(0.058)  0.000(0.000)  0.370(0.063)  0.998(0.002)  0.279(0.204)  0.652(0.110)  0.894(0.074)
0.9,0.6,0.7  0.474(0.089)  0.000(0.000)  0.168(0.030)  0.959(0.032)  0.766(0.180)  0.733(0.083)  0.819(0.053)
0.7,03,09  0.764(0.068)  0.026(0.077)  0.446(0.099)  1.000(0.001)  0.364(0.247)  0.641(0.111)  0.791(0.119)
0.7,03,0.7  0.715(0.128)  0.000(0.000)  0.228(0.077)  0.993(0.002)  0.829(0.085)  0.797(0.088)  0.759(0.092)
0.7,0.6,09  0.060(0.024)  0.000(0.000)  0.332(0.051)  0.998(0.001)  0.426(0.246)  0.591(0.094)  0.859(0.083)
0.7,0.6,0.7  0.016(0.008)  0.000(0.000)  0.133(0.016)  0.909(0.035)  0.671(0.196)  0.773(0.070)  0.695(0.074)

« CESNA takes the second place two times.

e SIAN performs poorly.

* DMoN'’s performance is relatively acceptable.

e SEFNAC is the winner.

 KEFRIN methods perform acceptably.
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1.

Automating choice of the weight coefficients (p & &)

. An interesting real-world application.

Extending the proposed methods in theory-driven framework

Accelerating the computational speed of the SEFNAC methods.

Applying KEFRIN methods at feature-rich networks using similarity data should be considered as

another future work.

More related

- Shalileh, S., & Mirkin, B. Community extraction in feature-rich networks with least-squares criteria using

publications:

similarity data. PLoS One.

- Shalileh, S., & Mirkin, B. Summable and nonsummable data-driven models for community detection in

feature-ric

h networks. Sub

mitted to Social Network Analysis and Mining (SNAM).
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Thank you!

sr.shalileh@gmail.com

Soroosh Shalileh
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