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Abstract

The majority of existing neural networks operate with
real-valued representation of data. However, there are
multiple tasks in which the input is complex-valued. The
complex-valued data is considered to be more informative
in terms of larger representational capacity. These reasons
motivate researchers to develop neural networks using com-
plex numbers instead of real-valued ones. In this paper, we
take a step forward in the generalization of neural networks.
We develop the basic building blocks for dual-valued neu-
ral networks based on dual numbers. We adjust basic layers
such as Linear, Convolution, Average Pooling, ReLU to the
dual domain and present an algorithm for Dual Batch Nor-
malization. We construct several dual-valued neural net-
works for classification tasks basing on classical CV prob-
lems and the MusicNet and G2Net datasets. We show that
dual-valued models outperform analogous complex-valued
neural networks in execution time and have higher or at
least the same accuracy.

1. Introduction
Generalization of neural networks to the complex do-

main is a popular subject of recent studies. The reason for
such heightened interest is expected since the original data
is often presented in a complex form. Recent studies show
multiple advantages of using complex-valued neural net-
works, as opposed to the real-valued ones, including faster
learning [3] and larger representational capacity [19]. Fur-
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thermore, the state-of-the-art works introduce equivariant
and invariant complex-valued layers and activation func-
tions for neural networks, which allow researchers to con-
struct robust models with better convergence and accuracy
[7, 22]. These results are based on the fact that complex
numbers can be represented in the polar form in terms of
their amplitude and phase. This representation also has a
significant drawback in particular, it is difficult to find a sum
of complex numbers in this form. That is why in this work
we will focus on algebraic representation of complex num-
bers.
A survey [4] of existing complex-valued networks and de-
veloped approaches also shows growing interest in this field
of artificial intelligence.
These outstanding results inspire us to perform further gen-
eralization of neural networks to the dual domain D. The
dual numbers are a special class of numbers, whose ele-
ments can be written as x+εy, where x, y are real numbers,
and ε is a nilpotent element, which satisfies the relations:
ε2 = 0, ε ̸= 0. The basic mathematical operations for dual
numbers are

(x1 + εy1)± (x2 + εy2) = (x1 ± x2) + ε(y1 ± y2), (1)
(x1 + εy1)(x2 + εy2) = x1x2 + ε(x1y2 + y1x2), (2)

(x1 + εy1)

(x2 + εy2)
=

x1

x2
+ ε

(y1x2 − x1y2)

x2
2

, (3)

(x+ εy) = (x− εy). (4)

As well as complex numbers, dual numbers have found ap-
plications in physics, specifically in the Screw theory [9].
Dual numbers also make it possible to automatically com-
pute derivatives of functions [5, 14]. There are no obstacles
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to use dual numbers for Deep Learning. Presumably, the
first and only attempt to investigate dual-valued neural net-
work is [20], but this work does not exploit any properties
of dual numbers, except for ε2 = 0.
Our increased interest in such algebra is driven by the fol-
lowing problem: when real-valued layers are transferred to
a complex domain, the number of operations is significantly
increased. For example, convolution of complex-valued in-
put z = x + iy with complex-valued filter matrix W =
A+ iB can be rewritten as Wz = Ax−By+ i(Ay+Bx),
which has four real-valued matrix multiplications (see Fig.
1). At the same time, we can consider x, y as separate
groups and apply real-valued convolutions to each chan-
nels independently. In this case, x and y are not be linked
with each other. To overcome this obstacle, we suggest us-
ing dual numbers. Dual-valued convolution of dual filter
W = A+εB and dual input z = x+εy, due to distributive
property and ε2 = 0, is Wz = Ax+ε(Ay+Bx). This con-
volution has only three real-valued matrix multiplications
(see Fig. 1), which results in 25% performance speed-up
compared to complex-valued convolution, and links x and
y channels as well. This result has persuaded us into further
research.
In this paper, we present a dual-valued neural network. We
provide definitions of the basic components of dual-valued
neural network, such as layers and activation functions. In
addition, we develop special normalization techniques that
utilize matrix representation of dual numbers. As it has
been shown for the real-valued networks [12], batch nor-
malization helps us accelerate the training process and reach
better accuracy.

2. Methodology

This section is dedicated to definitions of key elements
of a dual-valued neural network.

2.1. Generation of Dual-valued Data

Dual numbers are not natively implemented in any
framework. Therefore, to emulate dual-valued operations,
we use two real-valued channels, considering the first chan-
nel to be a real part of a dual-valued entity and the second
channel to be its dual component. The peculiarities of dual
algebra are considered internally.
The first thing to be clarified is how we get dual-valued
input. To generate dual-valued input for complex-valued
problems (MusicNet, G2Net), we associate the imaginary
part of the original input with a dual component, namely

x+ iy =⇒ x+ εy. (5)

It is not a theoretically based approach, it is only our as-
sumption. Here we also apply dual-valued neural networks

for classical computer vision classification tasks (CIFAR-
10, CIFAR-100, SVHN). To make dual-valued input, we
use a more general method, comparing to the one proposed
in [22]. In [22], the authors convert [R,G,B] real-valued
image to a complex form by

[R,G,B] =⇒ [R+ iG,G+ iB], (6)

claiming that this type of encoding captures channel cor-
relations and hue shift. In this paper, we generalize the
idea from [22], namely, we use a linear transformation
with trainable parameters to convert [R,G,B] into six
real-valued channels, which are later reshaped into three
complex/dual-valued channels.

2.2. Dual-valued Operations

To be able to construct a dual-valued neural network of
any kind, we need to define its building blocks. Here we
define the key operations needed for developing dual-valued
networks.

2.2.1 Dual-valued Convolution

One of the most important operations in neural networks is
convolution. In order to illustrate convolution in the dual
domain, we exploit the matrix representation of dual num-
bers that uses only real-valued entities. Algebra of dual
numbers z = x + εy is known to be isomorphic to the
algebra of second-order real-valued matrices of the form

A =

(
x y
0 x

)
. Therefore, convolution of a dual-valued

filter W = Wr + εWd and a dual-valued input matrix
z = x + εy is identical to the following matrix manipu-
lation

W ∗ z =

(
Wr Wd

0 Wr

)
∗
(
x y
0 x

)
=

=

(
Wr ∗ x Wr ∗ y +Wd ∗ x

0 Wr ∗ x

)
, (7)

where * denotes convolution .
Complex numbers are also isomorphic to the algebra of

second-order real matrices of the form A =

(
x −y
y x

)
.

So, complex-valued convolution is expressed in the matrix
notation as

W ∗ z =

(
Wr −Wi

Wi Wr

)
∗
(
x −y
y x

)
=

=

(
Wr ∗ x−Wi ∗ y −(Wr ∗ y +Wi ∗ x)
Wr ∗ y +Wi ∗ x Wr ∗ x−Wi ∗ y

)
. (8)

Both of these convolutions have only two independent
terms. As it was mentioned earlier, we should make four
real-valued multiplications in the complex domain and only
three in the dual case to calculate them.
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Figure 1. Comparison of complex-valued and dual-valued convolutions. Complex-valued convolution is equivalent to four real-valued
matrix multiplications, while the dual-valued one consists of only three real-valued matrix multiplications.

2.2.2 Dual-valued Linear Layer

Linear or fully-connected layers are commonly used in neu-
ral networks. This kind of layers connects every input chan-
nel to every output channel. To generalize linear layer for
the dual domain, we again use the matrix representation
of dual numbers as well as the distributive and associative
properties of dual numbers. This leads to the similar re-
sult as the one we get in dual-valued convolution described
above. Namely, a dual-valued linear layer is equal to super-
position of three real-valued linear layers:

DLinear(W, b, z) = Linear(Wr, br, zr)+

+ ε(Linear(Wr, 0, zd) + Linear(Wd, bd, zr)), (9)

where Linear(w, b, x) stands for a real-valued linear layer,
in which w represents the weights, b is for the bias, and x is
for the input.

2.2.3 Dual-valued Average Pooling

Average pooling operation means calculating the average
for each patch of the feature map. This implies that each
nxn square of the feature map, where n is the kernel size,
is downsampled to the average value of the square. An av-
erage value of a set of dual numbers is average values of
their real and purely dual parts, so we define average pool-
ing in the dual domain as a real-valued average pool that is
applied independently to real and purely dual parts of the
dual-valued input:

DAvgPool(z) =

= AvgPool(Re(z)) + εAvgPool(Du(z)). (10)

2.2.4 Dual-valued ReLU

Activation functions are used to introduce non-linearity into
a system. Among the variety of real-valued activation func-
tions, ReLU -type ones do not suffer from the vanishing
gradient, so they are more stable. Functions of this kind
can be extended to the complex domain in multiple ways.
For example, a complex cardioid was applied in [27] for
magnitude resonance imaging fingerprinting:

f(z) =
1

2
(1 + cos∠z)z. (11)

It is also possible to apply ReLU to the real and imaginary
parts independently, as it is done in [26]:

CReLU(z) = Relu(Re(z)) + iRelu(Im(z)). (12)

Here, we apply ReLU activation function in the same way:

DReLU(z) = Relu(Re(z)) + εRelu(Du(z)), (13)

where Du(z) is a dual part of z. We also experimented
with others activation functions, but this one shows the best
results.

2.3. Norm of Dual Numbers

The key feature of this work is formulation of dual batch
normalization. It is based on the norm (or modulus) of a
dual number. In mathematical or physical literature, the
modulus of a dual number is usually taken as its real part,
since

|z| =
√
zz =

√
(x+ εy)(x− εy) = |x|. (14)

But several works like [15, 16] propose more sophisticated
expression for the modulus

|z| = |x+ εy| = x2 − y, (15)
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which describes the contour line of orbits of some Möbius
map. Unfortunately, the dual modulus defined by (2) can
be negative and leads to division by zero in normalization.
That is why we have to develop a new expression for the
dual norm.
To do this, we again exploit the representation of a dual

number z = x + εy as a matrix A =

(
x y
0 x

)
. Then we

associate the norm of this matrix with the norm of the orig-
inal dual number. There are multiple ways to determine the
matrix norm. First, let us define Rm×n as a vector space of
matrices with m rows and n columns entries in the field of
real numbers R. We use the matrix norm induced by a vec-
tor norm ∥ · ∥2 on R2×2 and a vector norm ∥ · ∥2 on R2×1

and define the dual norm as

∥z∥2 = sup
{
∥At∥22 : t ∈ R2×1, ∥t∥22 = 1

}
(16)

It is also called the operator norm. For the matrix that cor-
responds to the dual number z = x+ εy, the formula looks
as follows

∥At∥22 =

((
x y
0 x

)(
t1
t2

))T ((
x y
0 x

)(
t1
t2

))
=

= (xt1 + yt2)
2 + x2t22 =

t21 + t22 = 1
t1 = cosφ
t2 = sinφ

 =

= x2 +
y2

2
+ y

(
−1

2
y cos 2φ+ x sin 2φ

)
Then we find the extremum of this function:

f ′(φ) = y (y sin 2φ+ 2x cos 2φ) = 0

tan 2φ =
−2x
y

=⇒
cos 2φ =

∓ y√
4x2 + y2

sin 2φ =
± 2x√
4x2 + y2

.

And we eventually get the maximum of the function

∥z∥2 = x2 +
y2

2
+
∣∣∣y
2

∣∣∣√4x2 + y2. (17)

It is easy to show that

∥z∥ =
∣∣∣y
2

∣∣∣+√x2 +
(y
2

)2
. (18)

Now we should consider the limiting cases. For a real num-
ber, ∥z∥ = |x|, and for a purely dual number, ∥z∥ = |y|.
It is also interesting to find a contour line corresponding to
the constant value of the dual norm:

|y| = ∥z∥
2 − x2

∥z∥
. (19)

Figure 2. Contour lines correspond to the constant value of the
complex norm (left red circles) and dual norm (right blue parabo-
las).

To clarify the difference between the proposed dual norm
and the modulus of a complex number, we depicted both
contour lines at Fig. 2. One can see from Fig. 2 that the
contour line of constant dual norm is closer to the center, so
it influences the distance between two dual numbers, defini-
tion of which is essential to data normalization. In addition,
as with modulus defined by (15), our contour lines of the
constant dual norm (19) are parabolas, but they have differ-
ent slopes of their branches due to ∥z∥ in the denominator.

2.4. Dual Batch Normalization

One of the ways to accelerate the learning process of
deep networks and reach better data generalization is Batch
Normalization. Batch Normalization in its original form
[12] can only be applied to real-valued models. This ap-
proach includes normalization of each dimension of the k-
dimensional input

x̌(k) =
x(k) − E[x(k)]√

V ar[x(k)]
(20)

and additional scaling with shift

RBN [x̌(k)] = γ̌(k)x̌(k) + β̌(k). (21)

The linear transformation is needed to ensure that the to-
tal function can be the identity operator. There is also an
extension of it to the complex values [26]. The main idea
of such generalization is to treat complex values as 2D vec-
tors, which allows us to decorrelate real and imaginary parts
of data. Otherwise, if we apply the original Batch Normal-
ization to real and imaginary parts separately, it can end up
with a high eccentricity elliptical distribution. Therefore,
the authors of [26] define Complex Batch Normalization as

x̃(k) =
x(k) − E[x(k)]√

V [x(k)]
, (22)

where the covariance matrix V [x(k)] is defined as follows:

V [x(k)] =

(
Cov(x

(k)
r , x

(k)
r ) Cov(x

(k)
r , x

(k)
i )

Cov(x
(k)
i , x

(k)
r ) Cov(x

(k)
i , x

(k)
i )

)
(23)
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Similar to the original real-valued approach, Complex
Batch Normalization also has an additional linear trans-
formation with two parameters γ̌(k), β̌(k) with real-valued
learning components

γ̃(k) =

(
γ̃
(k)
rr γ̃

(k)
ri

γ̃
(k)
ir γ̃

(k)
ii

)
, β̃(k) =

(
β̃
(k)
r

β̃
(k)
i

)
. (24)

Finally, Complex Batch Normalization is

CBN [x̃(k)] = γ̃(k)x̃(k) + β̃(k). (25)

Here we generalize the batch normalization process for dual
values. To achieve this goal, we use the dual norm pro-
posed in the previous section. We should emphasize that we
cannot use the exact same procedure as for Complex Batch
Normalization [26] due to the following reason:

µ(k) = E[x(k)] = µ(k)
r + εµ

(k)
d (26)

Γ(k) = E[(x(k) − µ(k))2] = E[(x(k)
r − µ(k)

r )2]+

+ 2εE[(x(k)
r − µ(k)

r )(x
(k)
d − µ

(k)
d )] (27)

C(k) = E[(x(k)−µ(k))(x(k) − µ(k))] = E[(x(k)
r −µ(k)

r )2]
(28)

Here we can see that neither covariance Γ nor pseudo-
covariance C depend on E[(x

(k)
d − µ

(k)
d )2]. This problem

is similar to the independence of dual number norm (14)
on its dual part. To overcome this obstacle, we exploit
the norm of dual numbers proposed in the previous section.
To make Dual Batch Normalization, we need to define the
mean value and the variance first:

µ(k) = E[x(k)] = µ(k)
r + εµ

(k)
d (29)

(σ(k))2 =
1

m

m∑
i=1

∥x(k)
i − µ(k)∥2, (30)

where ∥·∥ is the norm determined by (18) for dual numbers.
Then we transform the input in the following way

x̂(k) =
x(k) − µ(k)√
(σ2)(k) + δ

, (31)

where δ = 10−7 is needed to avoid division by zero. The
last step is a linear transformation with dual-valued scaling
and shift:

DBN [x̂(k)] = γ̂(k)x̂(k) + β̂(k), (32)

where γ̂(k) = γ̂
(k)
r + εγ̂

(k)
d

β̂(k) = β̂(k) + εβ̂(k)
. We should emphasize that

Dual Batch Normalization is closer to RBN [x̌(k)] than to
CBN [x̃(k)], but instead of L2 norm, it uses the dual norm
defined by our formula (18).

Algorithm 1 Dual Batch Normalization

Input: Dual-valued x(k) over a batch:
B = {x(k)

1 , . . . , x
(k)
m };

Trainable parameters: γ̂r(k), γ̂
(k)
d , β̂

(k)
r , β̂

(k)
d

Output: y(k)i = DBN [x̂
(k)
i ]

1: µ(k) ← 1
m

∑m
i=1 x

(k)
i // batch mean

2: (σ(k))2 ← 1
m

∑m
i=1 ∥x

(k)
i − µ(k)∥2
// batch variance with dual norm

3: x̂(k) ← x(k)−µ(k)√
(σ2)(k)+δ

// normalization

4: y(k)i ← γ̂(k)x̂
(k)
i + β̂(k) ≡ DBN [x̂

(k)
i ]
// dual scale and shift

3. Implementation of Dual-valued Networks
To explore the capabilities of dual-valued neural net-

works, we have conducted a series of experiments with our
models for signal and image classification tasks and com-
pared the results of real and complex-valued neural net-
works with the same architecture. We also use a fixed train-
ing strategy to focus on influence of the new algebras rather
than hyperparameters.

3.1. Music Transcription Task

In this part we show the results for automatic music tran-
scription. The experiments are performed on the MusicNet
dataset [24]. To gain the computational efficiency, we re-
sample the original signal from 44.1kHz to 11kHz basing on
the algorithm described in [23]. This downsampling allows
us to decrease computational cost without any significant
information loss. Following [24], ’2303’, ’2382’, ’1819’
records are used as a test subset and other 327 files are used
as a training set. We conduct all the experiments with com-
plex representation of the frequency spectrum. For the real
model, we consider the real and imaginary components of
the spectrum as separate channels.
We also exploit the DeepConvNet architecture developed in
[26]. Our network consists of six 1D-convolutional layers.
The first one has the filter of size six and other layers have
kernel sizes equal three. Convolution blocks are followed
by a real-valued linear layer with 2048 connections for a
real model or a complex/dual-valued linear layer with 1024
connections for a complex/dual model and a ReLU activa-
tion function. Before passing through the last layer, the data
representation needs to be changed from the dual/complex
form to the real one. To preserve all information, we con-
catenate real and imaginary/dual components to one joint
channel. Finally, we apply real-valued linear layer with 84
connections and a sigmoid activation function. The number
of units in the last operator corresponds to the number of
notes present in the dataset. For the real, dual, and complex
models, we use ReLU and its counterparts DReLU and
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Figure 3. A dual ResNet18 architecture for gravitational wave detection (G2Net) and computer vision problems. The same architecture
was also used in complex-valued neural networks up to replacement of dual operations with the complex ones.

Figure 4. Precision-Recall curve for the MusicNet dataset.

CReLU respectively, which were defined in Section 2.2. In
all of our experiments we used an input window of 4096
samples or its FFT (which corresponds to the 8192-window
used in the baseline) and predicted notes in the center of the
window. All networks were optimized with Adam [13]. We
started with the learning rate at 10−3 for the first 10 epochs
and then decreased it by a factor of 10 at each of the epochs
10, 100, 120, and 150. The complex network was initial-
ized using the unitary initialization scheme respecting the
He criterion as it was described in [26]. The dual-valued
and real-valued models were initialized by the He initial-
ization according to the method proposed in [10], basing on
a uniform distribution. The results are summarized in Table
1. Precision-Recall dependency is depicted in Fig.4.

Table 1. Results of experiments on the MusicNet dataset.
Model Average Precision, % Parameters, MB
Real 68.9 43.90
Dual 73.0 43.83

Complex 72.5 43.86

From Table 1, we can observe that the best average pre-
cision is achieved by the dual-valued neural network. More-
over, as it will be shown in Section 3.4, the dual-valued
model has x0.8 inference time of the complex one. Mean-
while, the precision of the complex-valued model is close to

the value reported in [26]. These results show that a dual-
valued neural network has the best accuracy-performance
trade-off, because it is faster than a complex-valued model
and more accurate than other models. We consider dual-
valued neural networks to be promising solutions for the
tasks with the complex representation of the input data.

3.2. Gravitational Wave Detection

This part is dedicated to the implementation of dual-
valued networks with respect to signal processing, in par-
ticular, gravitational wave detection based on the G2NET
dataset. This training set consists of time series data, which
essentially is a number of noised synthetic gravitational
wave instances. It mimics measurements of a system of
three ground-based laser interferometers (LIGO Hanford,
LIGO Livingston, and Virgo) [1, 21, 25]. The gravitational
waves are radiated by accelerated huge masses. For exam-
ple, this phenomenon can be created during neutron star
merging or black holes collision.
Each sample of G2Net is represented as 3-channel (one for
each detector) time series spanning 2 sec with sampling rate
of 2,048 Hz [25]. The solution of this task consists of two
stages. The first one is the construction of the representa-
tive frequency spectrum of signals based on transform algo-
rithms [2], or also known as a spectral portrait. The second
part is the detection of waves’ presence or absence with the
help of neural network [2, 28].
In this paper we concatenate records to one signal track.
Since the signals have different relative amplitudes due to
sensitivity and geographical location of sensors, data was
normalized before concatenation. Afterwards, the CQT al-
gorithm (Constant-Q Transform [6]), which is considered to
be one of the preferred algorithms for gravitational waves
signal processing [2], is applied as a main preprocessing al-
gorithm to generate complex-valued scalogram of the track.
Complex-valued CQT output is used as input of complex-
valued and dual-valued networks without any changes (see
Section 2.1). In a real-valued case, modulus of CQT output
is used as input, but we should notice that it leads to loss of
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Table 2. Results of gravitational wave detection.
Model Average Precision, % Parameters, MB
Real 77.02 34.2
Dual 78.19 34.2

Complex 77.85 34.2

Figure 5. Precision-Recall curve for the G2Net dataset.

important information. Subsequently, the resulting scalo-
gram is processed as an image in the classification problem,
which is solved by a convolutional neural network.
To detect gravitational waves on the scalogram, we adapt an
architecture developed in [11]. Namely, we use ResNet18
with the same original architecture [11] as in the real-valued
case but with

√
2 times fewer features in case of dual or

complex networks (see Fig. 3). In order to emulate the dual
and complex numbers, we have added an extra dimension of
length two, where the first element corresponds to the real
part and the second one to the dual (or complex) part of a
number. All operations of real-valued neural networks are
changed to analogous dual- or complex-valued ones. Be-
fore the last layer of the complex-valued and dual-valued
networks outputs are transferred to real domain via apply-
ing ad-hoc norm. Models are optimized with RAdam [17]
algorithm with starting learning rate set to 0.05 changing by
StepLR scheduler with γ = 0.1 and step = 10. Networks
are trained for 30 epochs. Dual-valued and complex-valued
ResNet18 have average precision that is higher then real-
valued one (Table 2 and Fig. 5).

3.3. Computer Vision Problems

For CV tasks, we reuse ResNet18 (Fig. 3) developed
for the G2Net dataset. The main difference is caused
by the preprocessing (Section 2.1), which leads to three
dual-valued or complex-valued channels instead of three
real-valued ones. There is a study of the effect of color
representation on the accuracy of a neural network [8]. It
shows that the RGB representation is not optimal. Thus, a
trainable linear layer, which we use to convert colors into
the dual/complex domain, allows our neural networks to
determine the best color space for the task.

To train dual and complex models, we use stochastic
gradient descent [18] with 0.9 momentum to optimize
real-valued loss functions by treating the real and dual or
imaginary values as separate real-valued channels. So, we
use a standard approach for calculating dual and complex
derivatives. The cross entropy loss between the input and
the target is used as a criterion for these problems. We
also apply cosine annealing schedule, proposed in [10],
with Tmax = 300 and ηmin = 0. The training lasts 300
epochs. Our results of image classification on CIFAR-10,
CIFAR-100, and SVHN (Street View House Numbers) are
presented in Table 3.

Table 3. Accuracy (%) of our models for classical CV problems.
Model CIFAR-10 CIFAR-100 SVHN
Real 94.5 75.9 96.3
Dual 95.7 78.3 96.8

Complex 95.7 78.2 96.7

One can observe in Table 3 that the dual-valued neural
network achieves higher or at least the same accuracy com-
pared to the real/complex-valued ones in all cases. In addi-
tion, a dual-valued model shows better inference time than
a complex-valued one, but a real-valued neural network has
the best performance time (Section 3.4). Despite the fact
that these results are based on the simplest preprocessing
(Section 2.1), a dual-valued neural network shows good re-
sults. Our main idea is that dual-valued neural networks,
as well as complex-valued ones, allow different channels to
interact with each other due to the internal connection be-
tween real and dual parts. This inner complexity should be
exploited; possibly, more sophisticated input preprocessing
can lead to even better accuracy for these more complicated
networks.

3.4. Inference and Computational Complexity

As it was presented in Introduction, the theoretical
computational complexity of a dual-valued convolution is
25% less of the complex-valued one. However, they are
3 and 4 times, correspondingly, slower than a real-valued
convolution in case of the same amount of channels.
We modify the number of channels and input size so
that our models have the same number of weights in any
algebra (see Tables 1, 2). This implies that the theoretical
inference complexity of the DeepConvNet and ResNet18
models is accordingly ×1.5 and ×2 more expensive for the
dual and complex domains than for the real numbers. The
difference between experimental and theoretical figures is
explained by the cost of high-level implementation of Dual
and Complex Batch Normalization, which are not natively
integrated in cuDNN. Table 4 presents our measurements
of inference time for our models. The technical details are
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SW: PyTorch 1.11.0, CUDA 11.3; HW: CPU: 11th Gen
Intel(R) Core(TM) i9-11900KF 3.50GHz, GPU: NVIDIA
GeForce RTX 3080Ti.

Table 4. Inference time (µs) of considered models.
Model DeepConvNet ResNet18
Real 37 11
Dual 51 20

Complex 64 34

Table 4 indicates that the usage of dual or complex num-
bers in neural networks leads to a significant increase in
the number of operations. Nevertheless, dual-valued and
complex-valued networks reach higher metrics than the real
one.

4. Conclusion
The key feature of this work is a proposition of dual-

valued models with dual number based layers: Convolu-
tion, Batch Normalization, Linear, Average Pooling, ReLU.
We have shown that using dual numbers instead of complex
ones with proposed normalization allows us to improve the
average precision score (or reach the same) and significantly
speed up the execution time of neural networks, comparing
with the complex-valued models. Further modification of
data preprocessing can improve the generalization charac-
teristics of a dual neural network. We hope that our work
will inspire other researchers to use dual-valued neural net-
works for more difficult problems such as image segmenta-
tion and NLP.
There are still several unsolved problems such as trans-
formation of input to the dual numbers and backward
error propagation, which will be subjects of future re-
search.
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