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Abstract: The vast majority of existing neural networks operate by rules set within the algebra
of real numbers. However, as theoretical understanding of the fundamentals of neural networks
and their practical applications grow stronger, new problems arise, which require going beyond
such algebra. Various tasks come to light when the original data naturally have complex-valued
formats. This situation is encouraging researchers to explore whether neural networks based on
complex numbers can provide benefits over the ones limited to real numbers. Multiple recent works
have been dedicated to developing the architecture and building blocks of complex-valued neural
networks. In this paper, we generalize models by considering other types of hypercomplex numbers
of the second order: dual and double numbers. We developed basic operators for these algebras,
such as convolution, activation functions, and batch normalization, and rebuilt several real-valued
networks to use them with these new algebras. We developed a general methodology for dual and
double-valued gradient calculations based on Wirtinger derivatives for complex-valued functions.
For classical computer vision (CIFAR-10, CIFAR-100, SVHN) and signal processing (G2Net, MusicNet)
classification problems, our benchmarks show that the transition to the hypercomplex domain can be
helpful in reaching higher values of metrics, compared to the original real-valued models.

Keywords: deep learning; hypercomplex neural networks; complex numbers; dual numbers; double
numbers; hypercomplex norm; hypercomplex batch normalization

MSC: 68T07

1. Introduction

The exploration of neural networks in complex algebra is a modern area of research.
Many tasks in classification, signal pattern recognition, and the generation of new signals
inherently present data in a complex format. Recent studies have shown that complex-
valued neural networks outclass real-valued ones in terms of representational capacity [1]
and learning speed [2]. Other publications aim to develop complex-valued layers and
activation functions for neural networks (see the survey in [3]). The progress allows
researchers to build effective models with better convergence and accuracy [4,5].

These promising results have inspired us to further advance the generalization of
neural networks, extending to the dual D and double or complex-split S algebras. The basic
mathematical operations for these numbers are as follows:
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(x1 + τy1)± (x2 + τy2) = (x1 ± x2) + τ(y1 ± y2)

(x1 + τy1) · (x2 + τy2) = (x1x2 + σy1y2) + τ(x1y2 + y1x2)

x1 + τy1

x2 + τy2
=

x1x2 − σy1y2

x2
2 − σy2

2
+ τ

x2y1 − x1y2

x2
2 − σy2

2

(x + τy)∗ = x− τy

In addition to complex numbers, dual and double numbers have found applications
in physics, e.g., screw theory [6] or relativistic cosmology [7]. Dual numbers also make it
possible to automatically compute derivatives of functions [8–10]. Double-valued networks
have been used for solving CV tasks [11]. Therefore, using hypercomplex numbers for deep
learning is well justified. There have been studies on neural networks based on Clifford
algebra [12], specifically on dual numbers [13], and room for research still remains. The goal
of this paper is to generalize the approach of using second-order hypercomplex algebras
for neural networks.

There is another reason for our interest in dual and double numbers. As real-valued
layers expand to the hypercomplex algebras, the number of operations increases. The mag-
nitude of this growth depends on the computational complexity of basic operations on
the numbers. For example, one multiplication of two complex numbers is more expen-
sive than four multiplications of real numbers. This influences the computational cost
of the operators discussed in Section 2. Thus, the convolution of a complex-valued in-
put z = x + iy with a complex-valued filter matrix W = A + iB can be rewritten as
Wz = (Ax − By) + i(Ay + Bx), which implies four real-valued matrix multiplications
(see Figure 1). The dual-valued convolution of a dual filter W = A + εB and a dual
input z = x + εy evaluates Wz = Ax + ε(Ay + Bx) because ε2 = 0. This type of con-
volution only has three real-valued matrix multiplications (see Figure 1), which gains
a +25% theoretical performance speed-up, compared to the complex-valued convolu-
tion, and interconnects x and y in the process. As for double numbers, the cost of the
naive implementation of the convolution is the same as for complex numbers because
(A + jB) · (x + jy) = (Ax + By) + j(Bx + Ay). However, the features of double numbers
enable variable substitution that allows changing to a so-called diagonal basis. Under that
new setup, a double-valued convolution is effectively only two real-valued convolutions
instead of four. Section 3 of this paper is dedicated to the optimizations of hypercomplex
networks, including the diagonal representation of double numbers (Section 3.3). In this
paper, we will mainly use the original representation of double numbers, for the sake of
following the universal convention.

Figure 1. Computational complexity of convolution in the complex, dual, and double algebras.

It is worth mentioning that double numbers in the diagonal representation have a
significant flaw: the inability to connect x and y. However, the influence of this problem
can be mitigated by a special batch normalization operator and/or an activation function
for double numbers, which would make them connect. This adjustment is very important.
As the experiments with real-valued networks have shown [14], an appropriate batch
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normalization helps accelerate the training process and reach better accuracy. We will
further discuss the components of hypercomplex-valued neural networks in detail.

In Section 4 of this paper, we show that the adaptation of neural networks to the algebra
of hypercomplex numbers allows us to improve precision. The important conclusion here
is that the proposed types of neural networks, being barely explored so far, hold great
potential for further research.

2. Methodology

This section is dedicated to the definitions of key elements of a hypercomplex neu-
ral network.

2.1. MindSpore Hypercomplex Data Representation

Until recently, only complex operators have been supported in popular frameworks,
such as TensorFlow and PyTorch. The list of supported operations only contains basic
manipulations with complex-valued tensors, as well as convolutional and linear layers.
As of now, the situation has changed dramatically. MindSpore has become the first platform
to support all the core layers needed to build second-order hypercomplex neural networks.

MindSpore allows researchers to create complex, dual, and double tensors, and per-
form all basic operations, such as slicing, concatenation, conjugation, and accessing both
components of tensors. Convolution and linear layers are supported by MindSpore for all
types of hypercomplex algebras of the second order. Other essential operators for deep
learning, such as activation functions and algebra-specific batch normalization, are also
integrated into MindSpore.

Within this framework, the hypercomplex tensor is represented as a two-channel
real-valued tensor. Tensors of this shape are used as arguments and all operators return
values in the same format. The peculiarities of every type of algebra are considered by
a specific realization of network operators inside MindSpore, which interlinks the two
channels of the tensors.

2.2. Hypercomplex Operators

The implementation of the operators mentioned above is based on our proposed
method of generalizing the process of constructing building blocks for hypercomplex
neural networks.

2.2.1. Convolution

Convolution is one of the most important operations in neural networks. In order to
explain convolution in the hypercomplex algebra, we exploit the matrix representation
of second-order hypercomplex numbers that use real numbers. The algebras of complex,
dual, and double numbers u = x + τy are all known to be isomorphic to the corresponding

algebras of the second-order real matrices of the following form:
(

x y
σy x

)
. Recall that

τ2 = σ. Therefore, the convolution of a hypercomplex filter W = Wx + τWy and a
hypercomplex input u = x + τy can be expressed as follows:

W ∗ u ∼
(

Wx Wy
σWy Wx

)
∗
(

x y
σy x

)
=

(
Wx ∗ x + σWy ∗ y Wx ∗ y + Wy ∗ x

σ(Wx ∗ y + Wy ∗ x) Wx ∗ x + σWy ∗ y

)
.

As mentioned earlier, we need to make three real-valued multiplications in the dual
algebra (Wx ∗ x, Wy ∗ x, and Wx ∗ y), but four in the cases of complex and double numbers
(Wx ∗ x, Wy ∗ x, Wx ∗ y, and Wy ∗ x). For double numbers, however, changing variables, as
shown in Section 3.3, enables moving to the diagonal representation, where the algebra be-

comes isomorphic to the algebra of real matrices of the following form: 1
2

(
x + y x− y
x− y x + y

)
,

and the convolution only requires two convolutions in real numbers.
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2.2.2. Linear Layer

Linear (fully connected, dense) layers are commonly used in neural networks as the
head blocks in the CV (computer vision) domain and as the main operators in NLP (natural
language processing) models. To generalize linear layers for the two-dimensional algebras,
we use the matrix representation of second-order hypercomplex numbers. In the end,
a linear layer with hypercomplex inputs and weights is equivalent to the superposition of
real-valued linear layers:

HL(W, B, u) = RL(Wx, Bx, ux) + τ2RL(Wy, 0, uy) + τ(RL(Wx, 0, uy) +RL(Wy, By, ux)),

where RL(w, b, x) stands for a real-valued linear layer, with w, b, and x denoting weights,
bias, and the input, respectively.

2.2.3. Average Pooling

The average pooling operation implies calculating the arithmetic mean for each patch
of the feature map. This means collapsing every n × n square of the feature map into
its average value. This is equivalent to convolution, with the stride being equal to the
kernel size, where kernel weights are real numbers that are equal to 1

n2 . Because the kernel
W = Wx + τWy in this particular case is purely real, Wy = 0, and the convolution formula
can be simplified as follows:

W ∗ u = W ∗ (x + τy) = Wx ∗ (x + τy) = Wx ∗ x + τ(Wx ∗ y).

From this expression, average pooling is equivalent to two real-valued average pool-
ing operations, with each independently applied to every component of the input data
u = x + τy:

HAvgPool(u) = RAvgPool(x) + τRAvgPool(y).

2.2.4. ReLU

Activation functions are used to introduce non-linearity into neural networks. There
are multiple activation functions based on real numbers, and greater varieties are based
on hypercomplex numbers. Among the real-valued activations, there is a family of ReLU-
type functions, which do not suffer from the vanishing gradient problem. This property
makes them quite stable. Functions of this type are used in the complex algebra as well.
For example, the authors of [15] applied ReLU to the real and imaginary parts separately.
In this paper, we extend this definition and apply it to other algebras:

HReLU(u) = RReLU(x) + τRReLU(y).

This activation approach is not perfect. First, in contrast to RReLU on real numbers,
HReLU(u) may not be equal to 0 or u. Second, the real and imaginary parts are processed
independently and, therefore, are not fully interlinked. Despite that, the method shows
good experimental results, and its obvious advantage is simplicity.

2.3. Norm of Hypercomplex Numbers

In deep learning, the ability to properly update model parameters is important for
training a model with better accuracy on a test dataset. The weights may not be efficiently
updated if elements of intermediate tensors are not normalized due to the gradient explo-
sion or vanishing problem. In real-valued models, the solution is the batch normalization
procedure. The idea is to balance tensor elements based on the variance of the batch.
To develop a counterpart operator for neural networks based on second-order algebras,
we must find an equivalent of the absolute value function. Here, we define a concept of
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the norm (or modulus) of hypercomplex numbers. In mathematical or physical literature,
the modulus of a complex number is traditionally defined as

C|z| =
√

zz∗ =
√
(x + iy)(x− iy) =

√
x2 + y2. (1)

However, the generalization of this method to other types of hypercomplex numbers does
not work quite well:

H|u| =
√

uu∗ =
√
(x + τy)(x− τy) =

√
x2 − σy2 =

{
|x|, u ∈ D√

x2 − y2, u ∈ S

This result is hardly applicable to our purpose. The dual norm does not depend on the dual
part. In the case of double numbers, the function is not well-defined for half of the elements.
In [16], the authors derive the norms of dual numbers that are free from the mentioned
downsides. Here, we extend the idea to develop the formula for all hypercomplex numbers
of the second order, and make sure that it replicates the expression of the standard norm of

complex numbers (1). The approach is based on the matrix representation A =

(
x y

σy x

)
of a hypercomplex number u = x + τy. We derive the norm of this matrix and associate
it with the norm of a hypercomplex number. For the matrix norm, we use the following
definition:

‖A‖2 = sup
{
‖At‖2

2 : t ∈ R2×1, ‖t‖2
2 = 1

}
After some straightforward mathematical manipulations (see Appendix A), we obtain the
following formula for the hypercomplex number norm:

H‖u‖ =


√

x2 + y2, u ∈ C∣∣ y
2

∣∣+√x2 +
( y

2
)2, u ∈ D.

|x|+ |y|, u ∈ S
(2)

To show the differences among the proposed norms for the hypercomplex algebras,
we depict ‖u‖ equal to 2, 4, or 6 with contour lines in Figure 2. It is shown that the contour
lines of dual and double norms are closer to the center than the corresponding contour
lines for complex numbers. Different norm expressions have different effects on batch
normalization for the dual, complex, and double algebras.

Figure 2. Illustration of the contour lines corresponding to the constant values of the complex, dual,
and double number norms.

2.4. Batch Normalization

As mentioned in the previous section, batch normalization is very important for a
successful training process and convergence to high-metric values. In its original form [14],
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it can only be applied to the real-valued models. This approach includes the normalization
of each dimension of the k-dimensional input:

x̌(k) =
x(k) − E[x(k)]√

Var[x(k)]
.

After this transformation, the mean of x̌(k) is equal to zero, and the standard variance is
equal to one. However, it is better to make the mean and variance trainable parameters.
In practice, it is achieved by performing additional scaling and shifting:

RBN[x̌(k)] = γ̌(k) x̌(k) + β̌(k).

The technique of batch normalization has been extended to complex inputs [15].
The authors suggested transforming the inputs using a covariance matrix so that the real
and imaginary parts do not correlate. However, we cannot generalize this method explicitly;
this is because—for dual numbers—the pseudo-covariance C cannot be equal to zero:

DC = E[(z− µ)2] = E[((zx − µx) + ε(zy − µy))
2] =

= E[(zx − µx)
2] + ε(2 · E[(zx − µx)(zy − µy)]),

with at least the real parts always being greater than zero. Therefore, we need to find an
alternative way to generalize batch normalization to all types of hypercomplex algebras
of the second order. In this paper, we present a method based on the norm concept of
hypercomplex numbers, as derived in the previous section, and compare the proposed
method for complex numbers with the idea presented in [15].

First, we define the mean value in the traditional channel-wise way, which is the same
for all algebras:

µ(k) = E[u(k)] = µ
(k)
x + τµ

(k)
y .

Then we define the variance that is specific to the type of hypercomplex algebra:

Var[u(k)] =
1

m− 1

m

∑
i=1
‖u(k)

i − µ(k)‖2.

where ‖ · ‖ is determined by (2). Then we transform the input as follows:

û(k) =
u(k) − µ(k)√
Var[u(k)] + δ

,

where δ is a small number needed to avoid division by zero. The last step is hypercomplex
channel-wise scaling and shifting:

HBN[û(k)] = γ̂(k)û(k) + β̂(k), (3)

where γ̂(k) and β̂(k) are the hypercomplex weights and bias, accordingly.
In the specific case of complex numbers:

CVar[z] = E[(z− µ)(z− µ)∗] = E[(x− µx)
2 + (y− µy)

2] = Γ(z).

So, dividing the centered input by
√
CVar[z] provides the covariance Γ(ẑ) = 1. Note that,

in general, pseudo-covariance is not equal to zero:

C(ẑ) = E[ẑ2] = E[(x̂ + iŷ)2] = E[x̂2 − ŷ2] + i(2 · E[x̂ŷ]) 6= 0.
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Since x̂ and ŷ may correlate, E[x̂ŷ] 6= 0. Despite that, as shown in Section 4, using this
method results in good metric values. We emphasize that MindSpore is the only framework
that has implemented this mathematically justified batch normalization technique.

We conduct an ablation study of the proposed batch normalization technique. For this
purpose, we construct a hypercomplex LeNet-5 model and vary the normalization. The fol-
lowing approaches are considered: real-valued channel-wise normalization, covariance-
based normalization from [15], and algebra-aware normalization (3) based on the proposed
hypercomplex norm (2).

We show that all normalization types lead to about the same results on the MNIST
dataset after 20 epochs (see Table 1). Nevertheless, the proposed hypercomplex normaliza-
tion is more beneficial because it can be further fused with a previous convolutional layer
(Section 3.4).

Table 1. Ablation study of normalization techniques.

Type of BN
Algebra

Complex Dual Double

Covariance 98.12 96.88 98.02
Channel-wise 98.53 98.25 98.40

Complex 98.50 98.38 98.38
Dual 98.35 98.23 98.28

Double 98.26 98.26 98.20

2.5. Backward Propagation of Loss Function Gradient

An important part of neural network training is gradient calculation. Computing
the loss function gradient relies on the backpropagation algorithm, which exploits the
chain rule. In this paper, we explore the gradient propagation problem in the algebra
of hypercomplex numbers. The classic definition of the derivative of a function f (u) =
f (x + τy) = v(x, y) + τw(x, y) of a hypercomplex argument u = x + τy, where v and w
are real-valued functions, is

f ′(u) = lim
∆u→0

f (u + ∆u)− f (u)
∆u

.

This limit can only exist if it is well-defined when ∆u approaches zero along the
real axis (∆u = ∆x) or the imaginary axis (∆u = τ∆y). In either case, it should pro-
vide the same result. Equating these special cases, we obtain the general equivalents of
Cauchy–Riemann equations:

∂v
∂x

=
∂w
∂y

,
∂v
∂y

= τ2 ∂w
∂x

= σ
∂w
∂x

.

Functions that satisfy these equations are called holomorphic. In practice, this is a strong
restriction, and most of the existing operators do not satisfy the Cauchy–Riemann criteria.
To overcome this, we use the approach invented by Wirtinger for complex numbers [17].
It applies variable substitution in order to rewrite a complex-variable function f (z) as a
holomorphic function of two arguments f (z, z∗). This idea was applied in [18] to derive the
gradient of double numbers. Here, we extend this approach to all second-order algebras:

x =
u + u∗

2
, y =

u− u∗

2τ
.

For complex and double numbers, we can easily eliminate 1
τ by multiplying both the

numerator and denominator by τ and we end up with τ2 = σ ∈ R in the denominator.
However, we cannot perform the same trick for dual numbers because—in that case—σ is
equal to zero. Thereby, we must keep ε in the denominator. We must also keep the expressions
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with ε2 in the numerator, because they will contribute to the component with ε if they cancel
one of the ε with 1

ε .
Here, we clarify what exactly must be calculated in order to update hypercomplex

weights. With complex-valued networks, researchers usually treat the real xn and imaginary
yn parts of weights zn as separate real-valued channels and update them using the real-
valued derivative of a loss function:{

xn+1 = xn − α ∂L
∂x

yn+1 = yn − α ∂L
∂y
⇒ zn+1 = zn − α

(
∂L
∂x

+ i
∂L
∂y

)
We generalize these calculations for all hypercomplex numbers of the second order, considering:

un+1 = un − α ·
(

∂L
∂x

+ τ
∂L
∂y

)
We define the expression inside the parenthesis as a hypercomplex gradient and calculate it
via the gradient of a hypercomplex operator f (see Appendix B) as follows:

∂L
∂x

+ τ
∂L
∂y

=
∂L
∂ f

(
∂ f
∂x

+ τ
∂ f
∂y

)
+

(
∂L
∂ f

)∗(∂ f
∂x
− τ

∂ f
∂y

)∗
It is noteworthy that ∂L

∂x + τ ∂L
∂y can be expressed in terms of u and u∗, i.e.:

∂ f
∂x

+ τ
∂ f
∂y

=


2 · ∂ f

∂u∗ , u ∈ C
2 · ∂ f

∂u , u ∈ S
∂ f
∂u + ∂ f

∂u∗ + ε2
(

∂ f
∂u −

∂ f
∂u∗

)
, u ∈ D

With dual numbers, we keep the part with ε2, despite the fact that it must be equal to
zero, as stated above.

We implemented this formula for dual algebra. This method yields results consistent
with the calculations from two real-valued derivatives. Our experiments show that the
training time is approximately the same as well. However, the performance can be im-
proved if operations on hypercomplex numbers are implemented as instructions on the
hardware level.

3. Optimizations

In this section, we discuss technical methods to speed up the execution of testing
and/or training models based on hypercomplex numbers. While this is an important
engineering challenge, it is not as crucial as achieving the best possible accuracy. We focus
on searching for equivalent transformations that speed up hypercomplex operators and do
not affect the network output or metric values. These methods are not universal, so the
final acceleration depends on the model architecture.

3.1. Hypercomplex Convolution Grouping

We express a hypercomplex convolution through a certain number of real-valued
convolutions (Section 2.2). For complex- and dual-valued convolutions, we have to conduct
extra addition and/or subtraction (see Figure 1). It is possible to “insert” these arithmetic
operations into the real-valued convolutions. In order to do that, we concatenate the
components of the input and perform a similar operation for the weights (see Figure 3).
This approach increases memory usage and necessitates tensor duplication, using the
best-optimized solution. Note that, in the case of the complex-valued convolution, we need
to invert the imaginary part of the weights when we calculate the real part of the output.
Thus, we implement subtraction. Although the negation operation must be cheap in terms
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of execution time, it is possible, if needed, to store the inverted weights in advance to speed
up the inference at the cost of a larger model size.

3.2. Karatsuba’s Algorithm

Karatsuba’s algorithm is a well-known technique used for the optimization of com-
plex number multiplication. It can also be applied to convolutions and linear complex-
valued operators. For example, a linear operator can be rewritten as three real-valued
linear operators:

CL(wx + iwy, x + iy, bx + iby) = L1 − L2 + i(L3 − L1 − L2),

where L1 = RL(wx, x, bx), L2 = RL(wy, y, 0), and L3 = RL(wx + wy, x + y, bx + by). Fewer
matrix multiplications come at the expense of a greater number of additions and subtrac-
tions. Therefore, Karatsuba’s algorithm performs better for convolutions with large batch
sizes and weight widths, where multiplications are more expensive.

Figure 3. Convolution grouping in the complex and dual algebras.

3.3. Diagonal Representation of Double Numbers

In Section 1, we briefly mentioned the representation of double numbers in the diago-
nal basis. Here is its mathematical definition:

x′ = x + y, y′ = x− y

z = x + jy = x′
1 + j

2
+ y′

1− j
2

The computation complexity of multiplication is halved in this form:

(A
1 + j

2
+ B

1− j
2

) · (x
1 + j

2
+ y

1− j
2

) = Ax
1 + j

2
+ By

1− j
2

Section 2.2 shows the isomorphism between hypercomplex numbers and matrices of the
second order. Then, a convolution of double numbers in the diagonal form can be expressed
as follows:

W ∗ u ∼ 1
2

(
Wx + Wy Wx −Wy
Wx −Wy Wx + Wy

)
∗ 1

2

(
x + y x− y
x− y x + y

)
=

=
1
2

(
Wx ∗ x + Wy ∗ y Wx ∗ x−Wy ∗ y
Wx ∗ x−Wy ∗ y Wx ∗ x + Wy ∗ y

)
,

which implies the convolution calculation as two component-wise real-valued convolutions
Wx ∗ x and Wy ∗ y. Thus, we define new variables as j1 = 1+j

2 and j2 = 1−j
2 , so that

z = j1x + j2y. Batch normalization can be updated accordingly. Moving from the regular
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representation to the diagonal one is identical to the affine transformation of the plane of
double numbers. The norm of a double number z = j1x + j2y is expressed as max (|x|, |y|).

As discussed before, the downside of using the diagonal representation is that x
and y are poorly interlinked and are almost equivalent to two independent real numbers.
The batch normalization based on the norm of double numbers partially solves this issue.
Average pooling and linear functions are calculated for both components independently,
because they are special cases of convolution. The relationship between two components is
introduced through non-linear activation functions. The ReLU implementation

SReLU(x + jy) = RReLU(x) + jRReLU(y)

works well with the classic representation of double numbers. It makes sense to reuse this
by transforming the intermediate tensor to the classic representation before applying the
component-wise activation. In the end, the formula looks as follows:

SReLU(j1x + j2y) = j1

[
RReLU(

x + y
2

) +RReLU(
x− y

2
)

]
+

+j2

[
RReLU(

x + y
2

)−RReLU(
x− y

2
)

]
.

This activation function requires more operations compared to the base ReLU implemen-
tation. However, in combination with the enhanced performance of the convolution, it
allows the model to save precision with significant acceleration.

3.4. Equivalent Transformations

Real-valued convolutional neural networks can be accelerated by means of a fusing
convolution with a subsequent batch normalization layer into a convolution with new
parameters, as described by the following equations:

W f used =
α√
Var
×W, (4)

b f used =
α√
Var
× (b− µ) + β, (5)

where W f used and b f used are weights and biases of the fused convolution, W and b are
weights and biases of the original convolution, µ, Var, α, β are the mean value, variance,
scale, and shift of the batch normalization layer, respectively. The × operator is an element-
wise multiplication.

This transformation leads to improved inference time and memory conservation.
In the case of real models, some frameworks have already implemented this optimization.
For example, the ONNX simplifier does that automatically for models in the ONNX
graph format.

Hypercomplex operators require more resources, which makes this optimization
even more critical. However, so far, there is no automated tool that could apply it to
hypercomplex models. For example, an attempt to export a model to ONNX and use
the ONNX simplifier would fail. Currently, the ONNX simplifier cannot fuse a sequence
consisting of hypercomplex convolutional and batch normalization layers. So, we introduce
a new layer called CBN (Conv+BN), which behaves differently depending on the mode.
During training, it behaves as the original sequence of two layers, and in the evaluation
mode, it works as a convolution with fused parameters (Figure 4). These parameters are
pre-calculated according to Formulas (4) and (5), assuming that all multiplications follow
the rules of arithmetic of hypercomplex numbers.
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Figure 4. Scheme of hypercomplex CBN layer behaviors in different modes.

Our CBN layer is implemented in MindSpore to improve the inference times of
hypercomplex models.

4. Results

To explore the generalization of neural networks on hypercomplex numbers, we
develop a demonstrative network to predict values of noised hypercomplex functions.
In addition, we conduct a series of experiments with hypercomplex models for computer
vision and signal processing tasks. We compare the results of these networks with the
results of real-valued models of the same architecture.

4.1. Hypercomplex Toy Net

We start with a demonstrative neural network designed for predicting the values of
noisy functions of a hypercomplex argument. Our toy network consists of two linear layers
and a sigmoid-type activation function (see Appendix C) in between. This architecture
remains the same for all the algebras, but for every algebra, we use its implementation of
the operators.

In order to show the advantage of hypercomplex models, we compare their results
with the result of a real-valued model of the same architecture. The mean square error
(MSE) is used as a loss function. We train these four models for 1000 epochs with the same
number of parameters to predict values of two functions: Ai(u)—the Airy function of the
first kind and J3(u)—the Bessel function of the first kind of the third order. We also add
noise with a normal distribution to the values of functions in a training set (and a testing
set). The results are shown in Table 2.

Table 2. Toy net—value of the loss function.

Algebra
Ai(u) J3(u)

u ∈ C u ∈ D u ∈ S u ∈ C u ∈ D u ∈ S

Real 0.026 0.045 0.013 0.018 0.017 0.015
Complex 0.008 0.015 0.015 0.009 0.012 0.011

Dual 0.017 0.009 0.017 0.013 0.009 0.012
Double 0.023 0.050 0.010 0.017 0.018 0.010

It is clear from Figure 5 and Table 2 that the lowest mean square error is achieved by
a neural network belonging to the same type of hypercomplex number as the function
argument. For example, a complex-valued function is best predicted by a complex-valued
model, and so on. Thus, we conclude that networks based on hypercomplex numbers can
learn dependencies or patterns that lie in the corresponding algebra.
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Figure 5. Timeline of the MSE test loss function with respect to the number of epochs for the
value prediction of the Airy function in the complex, dual, and double algebras via our real and
hypercomplex models.

4.2. Classical CV Problems

Before we move on to solving CV classification problems, it is necessary to clarify
the process of data preparation. To convert a real-valued image to the hypercomplex
format in this research, we use a more general method compared to the one proposed
in [5]. In [5], the authors convert a real-valued image to a complex form by [R, G, B] ⇒
[R + iG, G + iB], claiming that this type of encoding captures the channel correlations and
hue shift. In this paper, we generalize this idea and use the following transformation
[R, G, B]⇒ [R + τG, G + τB, B + τR], which we call the color combination. However, there
is another possibility to generate an imaginary component by processing the real input
data using several layers [15].

We take ResNet18 architecture [19] as the basis of our model that is generalized
to hypercomplex algebras of the second order by replacing real-valued operators with
their counterparts in hypercomplex algebras. We use stochastic gradient descent with
0.9 momentum to optimize real-valued loss functions by treating the real and hypercomplex
parts as separate real-valued channels. To transform hypercomplex features into the real
ones, we concatenate both components of the output into a double-sized real-valued tensor
before feeding it to the terminating fully connected layer. The cross-entropy loss between
the input and the target is used as a criterion for these problems. The total number of
epochs is 200 for every experiment. The learning rate is scheduled by the cosine annealing
rule, starting from 0.1. The size of a mini-batch is 8. Every model is trained 5 times with
different seed numbers, and the median value of the accuracy is taken to negate the effects
of fluctuation. Our image classification results on CIFAR-10, CIFAR-100, and SVHN are
presented in Table 3.

Table 3. The accuracy (%) of our models for classical CV problems.

Algebra
Dataset

CIFAR-100 CIFAR-10 SVHN

Real 78.63 95.33 96.47
Dual 79.09 95.51 96.60

Complex 79.23 95.66 96.60
Double 78.88 95.51 96.45

One can observe in Table 3 that all models based on the second-order numbers achieve
higher accuracy compared to the real one. In addition, the complex-valued neural network
shows better metric values compared to other hypercomplex models.

Table 4 demonstrates how remarkably inference time is reduced by using the CBN
equivalent transformation described in Section 3.4. The effect is so dramatic that, from now
on, it is worth considering models with CBN only. Figures from the CBN column of Table 4
are used as the baseline for the assessment of other optimizations, which are discussed
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below. These figures also indicate that transferring from a real model to a hypercomplex one
significantly increases computational complexity. Table 5 shows the effect of optimization
on the second-order hypercomplex models.

Table 4. Effect of batch normalization fusion on the ResNet18 inference time (ms).

Algebra

Device

CPU GPU

No Fusion With CBN No Fusion With CBN

Real 8.56 6.54 1.72 1.42
Complex 34.97 26.49 6.73 5.13

Dual 28.00 20.78 5.45 4.17
Double 34.83 26.62 6.67 5.08

Software as follows: Python 3.8.10, MindSpore 1.10.0; Hardware as follows: CPU: Intel(R) Core (TM) i9-11900KF
@ 3.50 GHz, GPU: NVIDIA GeForce RTX 3090.

Table 5. Average inference time (ms) of ResNet18 models.

Algebra Optimization GPU Inference Time, ms

Real Baseline 1.42

Dual Baseline 4.17
Conv Grouping 4.04

Complex
Baseline 5.13

Karatsuba 4.79
Conv Grouping 4.91

Double Baseline 5.08
Diagonal 3.29

Software as follows: Python 3.8.10, MindSpore 1.10.0; Hardware as follows: CPU: Intel(R) Core (TM) i9-11900KF
@ 3.50 GHz, GPU: NVIDIA GeForce RTX 3090.

The worst performance is shown by the naive double-valued network, but the tran-
sition to the diagonal representation accelerates it dramatically. Still, the double-valued
network is not an optimal model because it shows the worst accuracy among all hyper-
complex models (see Table 3). As for the complex- and dual-valued networks, grouping
convolutions helps to improve the inference time, and for the complex-valued network, the
implementation of Karatsuba’s algorithm helps even more.

Our main idea is that dual-valued neural networks, as well as complex-valued ones,
allow different channels to interact with each other due to the internal connection between
real and dual parts. This inner complexity should be exploited; possibly, more sophisticated
input preprocessing can lead to even better accuracy for these more complicated networks.

4.3. Gravitational Waves Detection

This part is dedicated to the solution of a signal detection task using hypercomplex
networks for the G2Net dataset. This dataset consists of simulated noised signals that are
similar to gravitational waves recorded by a system of three ground-based laser interferom-
eters: LIGO Hanford, LIGO Livingston, and Virgo [20–22]. Generally, gravitational waves
are emitted during cosmic events, such as the merging of black holes [20]. The G2Net
dataset contains records of emulated events of the same nature.

To classify the original signal, we preprocess data to an image and run it through
our neural networks. The aim of preprocessing is to build a representative frequency
map of the original signal. The CQT algorithm [23] is considered efficient for analyzing
gravitational waves.

This preprocessing transfers the time series into the frequency portrait (see Figure 6),
which is treated as an image in further steps. Thus, the variations of frequency charac-
teristics of the signal at certain moments are reflected as visual features, such as specific
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shapes and colors, in the resulting image. To classify the image obtained after CQT, we
again use the ResNet18 model, whose operators are changed to the corresponding ones in
ad hoc algebras.

The model is optimized using the stochastic gradient descent algorithm with a mo-
mentum of 0.9 and weight decay of 5× 10−5 for L2 regularization. The regularization is
enhanced by adding dropout with a value of 0.2. The scheduler for the learning rate uses
the cosine annealing policy with Tmax = 6, and the initial value of lr is set to 5× 10−2.
Training lasts 30 epochs.

From Table 6, one can see that all models on the hypercomplex algebra outclass the
real-valued model in both accuracy and AUC ROC (area under the receiver operating
characteristic curve) metrics. The best result is achieved by a dual-valued neural network.

Figure 6. Frequency portrait obtained after CQT in the presence (target = 1) and absence (target = 0)
of gravitational waves.

Table 6. Average values of metrics (%) of our models for gravitational wave detection.

Algebra Accuracy, % AUC ROC

Real 76.45 0.82
Complex 78.73 0.84

Dual 79.24 0.85
Double 77.41 0.84

4.4. Music Transcription Task

In this section, we present the results of training hypercomplex networks on an
automatic music transcription task. The experiments are performed on the MusicNet
dataset [24]. In order to convert the input signal into a complex-valued tensor, we use the
Fourier transformation. We reuse the DeepConvNet architecture developed in [15], with its
building blocks replaced with the corresponding layers designed for specific algebras.

Table 7 shows that hypercomplex networks significantly outclass the same model on
real numbers. The best figures are shown by a dual-valued network.

Table 7. DeepConvNet—average precision.

Algebra Avg Precision, %

Real 70.0
Complex 73.2

Dual 73.4
Double 73.2
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Next, we present the results of inference time measurement on GPU (see Table 8).
The first column presents the measured inference time of the baseline model, and the
second one shows the inference time of the same models after optimizations.

Table 8. DeepConvNet—average GPU inference time (ms).

Algebra Not Optimized, ms Optimized, ms

Real 0.66 0.53
Complex 2.26 1.39

Dual 1.88 1.36
Double 2.26 1.53

Software as follows: Python 3.8.10, MindSpore 1.10.0; Hardware as follows: CPU: Intel(R) Core (TM) i9-11900KF
@ 3.50 GHz, GPU: NVIDIA GeForce RTX 3090.

The optimizations of the complex-valued network include convolution grouping and
Karatsuba’s algorithm for the most expensive linear operator. For dual numbers, we only
use convolution grouping, which provides a small performance gain. The double-valued
operators are redesigned to take advantage of the diagonal representation. In all cases,
batch normalization operators are fused with the preceding convolutions. The experi-
ments are performed with a batch size of 8. The dual-valued model outperforms all other
second-order hypercomplex models. The double-valued network, despite its diagonal
representation, yields the poorest results due to the significant overhead associated with
activation functions.

5. Discussion
5.1. Summary

Improving model accuracy is the cornerstone of many modern research studies in
the field of deep learning. This target can be achieved by different methodologies, such
as dataset expansion, changing the training procedure, variation of neural network archi-
tecture, and so on. In this study, we offer a take-and-go recipe on how to enhance the
model’s generalization ability. Namely, one needs to replace real-valued layers with the
corresponding complex, dual, or double counterparts, without any modifications to the
overall architecture. Generally speaking, it is impossible to predict which kind of algebra
will be better for a particular task. To overcome this obstacle, we define a universal ap-
proach to developing operators based on any kind of hypercomplex algebra of the second
order. This allows researchers to design an architecture of neural networks without heavy
dependence on a specific kind of algebra.

In our experiments on the CV, G2Net, and MusicNet tasks, complex and dual-valued
models have shown the best results. Nevertheless, neural network construction is a multi-
criteria problem. If inference and training times are important, then dual-valued models
are often preferable, whereas the complex-valued ones can provide extra accuracy when
the timing is not so critical.

5.2. Limitations and Outlook

A limitation of the present study is our sole method of converting real-valued data
to hypercomplex numbers for CV problems. It is possible that suboptimal data prepro-
cessing resulted in small gains on these tasks. We plan to explore new methods of real
input transformation.

Another unsolved issue is how to identify the type of algebra—for a particular task—
that would have the best performance among the hypercomplex algebras of the second
order. We will be looking for some heuristic methods that predict the best algebra without
training the models with all types of algebras.
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In conclusion, the presented methodology exhibits significant promise in enhancing
the efficiency of transformer-based architectures. Also, we plan to develop a hypercomplex
network compression methodology because we did not find any compression algorithms
for non-real models.
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Appendix A. Deriving the Hypercomplex Norm Formula

We associate the norm of a hypercomplex number u = x + τy with the norm of its

matrix representation A =

(
x y

σy x

)
. Thus, we have

‖u‖ =
√

sup{‖At‖2 | t ∈ R2×1, ‖t‖ = 1}.

For the matrix that corresponds to the hypercomplex number u = x + τy, the norm
expression is as follows:

‖At‖2
2 =

[ (
x y

σy x

)(
t1
t2

) ]T

×
[ (

x y
σy x

)(
t1
t2

) ]
=

= (xt1 + yt2)
2 + (xt2 + σyt1)

2 =

 t2
1 + t2

2 = 1
t1 = sin ϕ
t2 = cos ϕ

 =

= x2 + y2(cos2 ϕ + σ2 sin2 ϕ) + xy sin 2ϕ(1 + σ)

In order to find the extremum of this function, we equate the derivative to zero and solve ϕ:

f ′(ϕ) = y2 sin 2ϕ(σ2 − 1) + 2xy cos 2ϕ(1 + σ) = 0

tan 2ϕ =
2x

y(1− σ)
⇒


cos2ϕ =

±y(1− σ)√
4x2 + y2(1− σ)2

sin2ϕ = ∓2x√
4x2 + y2(1− σ)2

Eventually, we obtain the maximum of the following function:

‖u‖2 = x2 +
y2(1 + σ2)

2
+ |y|(1 + σ)

√
x2 + y2

(
1− σ

2

)2
.

https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://zenodo.org/record/5120004
https://zenodo.org/record/5120004
https://www.kaggle.com/competitions/g2net-gravitational-wave-detection/data
https://www.kaggle.com/competitions/g2net-gravitational-wave-detection/data
https://gitee.com/c_34/MindSpore/tree/update_hc/MindSpore/python/MindSpore/hypercomplex
https://gitee.com/c_34/MindSpore/tree/update_hc/MindSpore/python/MindSpore/hypercomplex
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From this, it is easy to show that

‖u‖ = |y|(1 + σ)

2
+

√
x2 + y2

(
1− σ

2

)2
.

Particular cases of complex, dual, double numbers (σ = −1, 0, 1) lead to Equation (2). It
is noticeable that with complex numbers (σ = −1), we obtain the traditional definition of
complex norm (1). In addition, we modify the double norm formula S‖x+ jy‖ = |x|+ |y| to
the case of the diagonal representation x′ = x+ y, y′ = x− y. In the diagonal representation,
x′ = x + y, y′ = x− y, and then S‖x + jy‖ =

∣∣∣ x′+y′
2

∣∣∣+ ∣∣∣ x′−y′
2

∣∣∣ = max(|x′|, |y′|).

Appendix B. Deriving the Hypercomplex Gradient Formula

Given that u = x + τy, where x, y ∈ R, we can express x and y as follows:

x =
u + u∗

2
, y =

u− u∗

2τ

From here,
∂L
∂u

=
∂L
∂x
· ∂x

∂u
+

∂L
∂y
· ∂y

∂u
=

1
2
·
(

∂L
∂x

+
1
τ
· ∂L

∂y

)
where L is a loss function. Similarly,

∂L
∂u∗

=
1
2
·
(

∂L
∂x
− 1

τ
· ∂L

∂y

)
As we assume that L is a real function, and x, y are real by definition,

∂L
∂u∗

=

(
∂L
∂u

)∗
Therefore,

∂L
∂x

=
∂L
∂u

+

(
∂L
∂u

)∗ ∂L
∂y

= τ

(
∂L
∂u
−
(

∂L
∂u

)∗)
For a hypercomplex operator f (u) = f (x + τy) = v(x, y) + τw(x, y), where v and w are
both real functions:

∂L
∂x

+ τ
∂L
∂y

=

(
∂L
∂v
· ∂v

∂x
+

∂L
∂w
· ∂w

∂x

)
+ τ

(
∂L
∂v
· ∂v

∂y
+

∂L
∂w
· ∂w

∂y

)
=

=
∂L
∂v

(
∂v
∂x

+ τ
∂v
∂y

)
+

∂L
∂w

(
∂w
∂x

+ τ
∂w
∂y

)
=

=

(
∂L
∂ f

+

(
∂L
∂ f

)∗)( ∂v
∂x

+ τ
∂v
∂y

)
+ τ

(
∂L
∂ f
−
(

∂L
∂ f

)∗)(∂w
∂x

+ τ
∂w
∂y

)
=

=
∂L
∂ f

[(
∂v
∂x

+ τ
∂w
∂x

)
+ τ

(
∂v
∂y

+ τ
∂w
∂y

)]
+

+

(
∂L
∂ f

)∗[( ∂v
∂x
− τ

∂w
∂x

)
+ τ

(
∂v
∂y
− τ

∂w
∂y

)]
=

=
∂L
∂ f

(
∂ f
∂x

+ τ
∂ f
∂y

)
+

(
∂L
∂ f

)∗(∂ f ∗
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+ τ

∂ f ∗
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)
=
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∂ f

(
∂ f
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+ τ
∂ f
∂y

)
+

(
∂L
∂ f

)∗(∂ f
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∂ f
∂y
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Appendix C. Functions of Second-Order Hypercomplex Variables

The following is the definition of the sigmoid function for the hypercomplex algebras
of the second order:

Hσ(u) =
1

1 + e−u =
1

1 + e−(x+τy)
=



1 + e−xcosy
1 + 2e−x cos y + e−2x + i e−xsiny

1 + 2e−x cos y + e−2x , u ∈ C

1
1 + e−x + εy e−x

(1 + e−x)2 , u ∈ D

j1 1
1 + e−

x+y
2

+ j2 1
1 + e

y−x
2

, u ∈ S
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