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ABSTRACT

Artificial neural networks have become an inseparable ele-
ment of human life. Researches do not stop at the current
progress and try to improve neural networks and expand fields
of applications. The most widespread way to make models
better consists in generalization of existing methods and ap-
proaches. In this paper, we make a step in an unusual di-
rection: we propose to use neural networks based on dual
numbers. We develop a special subclass of dual-valued op-
erators, which satisfy the equivalent of the Cauchy-Riemann
equations for the dual domain. We also propose a new type
of preprocessing and batch normalization, relying on pecu-
liarities of dual numbers. We test deep holomorphic dual-
valued models on music transcription and gravitational wave
detection tasks and show that our holomorphic dual-valued
networks achieve better inference time compared to the dual-
valued models and are better than their real-valued counter-
parts in sense of metrics.

Index Terms— deep learning, dual-valued neural net-
works, dual-valued batch normalization, dual number, dual
modulus, holomorphic dual-valued operators, holomorphic
dual-valued neural networks

1. INTRODUCTION

Neural networks have proven themselves as a powerful tool
for various types of tasks, such as computer vision, object
tracking, signal processing, natural language processing, and
many others. Nowadays, the majority of researches focus on
improvement of metrics, inference time and convergence of
deep learning models. There are multiple strategies of pur-
suing these goals. The most popular are: usage of data aug-
mentation, sophisticated optimizers/schedulers and changing
architecture of neural networks. In some works, it has been
noted that input of neural networks is not limited to the real-
valued format. There are multiple tasks, where the origi-
nal data have complex-valued representations. For example,

wind observation, where wind speed and its direction are si-
multaneously measured, so data can be stored as complex
numbers [1]. It is also a common approach that time series
of real-valued data of any source are converted into the com-
plex domain by Fourier transform.

Many researchers have tried to extend real-valued neural
networks to the complex domain and have showed multiple
benefits of using neural networks based on complex numbers.
For example, complex-valued networks have larger represen-
tational capacity [2] and higher convergence rate [3], compar-
ing to real models. Moreover, equivariant and invariant layers
for neural networks based on complex numbers, presented in
recent articles [4, 5], provide developers with new operators
that help to build more robust models with better accuracy
and generalization ability.

Generally, we suppose that the efficiency of complex
models is achieved by taking into account phase information
of the signal, because the real and imaginary parts of any
layer’s output can interact with each other. Thus, we do not
discard information and operate with it in an appropriate way.

A survey [6] of existing complex-valued networks and de-
veloped approaches also shows growing interest in this field
of artificial intelligence. These promising results urge us to
make a step further and generalize neural networks to the dual
domain D. Dual numbers were introduced in 1873 by English
geometer William Clifford (1845-1879) and were exploited
by the German mathematician Eduard Study (1862-1930) to
represent the dual angle which measures relative position of
two skew lines in space [7, 8].

The dual numbers are a special kind of two-component
numbers, whose elements have a form x+ εy, where x, y are
real numbers, and ε is a nilpotent element, which satisfies the
relations: ε2 = 0, ε ̸= 0. Similarly to the complex numbers,
the real number Re(z) = x will be called the real part of the
dual number z, and the real number Im(z) = y will be called
the imaginary part of the dual number z.

As well as complex numbers, dual numbers have found
applications in fundamental sciences such as quantum me-IC
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chanics [9], Screw theory [10], and Riemannian geometry
[11]. Dual numbers also make it possible to automatically
compute derivatives of functions [12, 13]. It appears that the
first attempt to develop neural network based on dual vari-
ables is [14], but this work does not exploit any properties
of dual numbers, except for ε2 = 0. In our previous work
[15], we adjusted basic layers such as Linear, Convolution,
Average Pooling, ReLU to the dual domain and presented an
algorithm for Dual Batch Normalization.

In this paper, we exploit the Cauchy-Riemann conditions
for functions of dual variable and introduce holomorphic
dual-valued operators for deep learning models. In addi-
tion, we leverage matrix representation of dual numbers to
generalize batch normalization technique [16] for the dual
domain.

In section 2 of this paper, we define the norm of dual num-
bers, clarify peculiarities of the Cauchy-Riemann conditions
for the dual-valued function, and provide information about
usage of dual numbers in automatic differentiation.

Section 3 contains description of developed non-holo-
morphic and holomorphic dual-valued building blocks for
our deep learning models. A special subsection is dedicated
to data preprocessing that is needed to convert a real-valued
input to the dual domain.

In section 4 of this paper, we show that holomorphic
dual-valued neural networks is a reasonable balance between
growth in computational complexity and achievement of
higher metrics.

2. PROPERTIES OF DUAL NUMBERS

In this section, we provide more advanced information about
some aspects of dual numbers, especially, we focus on deriva-
tive of functions of dual variables.

2.1. Fundamentals of dual numbers

The basic operations for dual numbers x+ εy are

(x1 + εy1)± (x2 + εy2) = (x1 ± x2) + ε(y1 ± y2),

(x1 + εy1)(x2 + εy2) = x1x2 + ε(x1y2 + y1x2),

(x1 + εy1)

(x2 + εy2)
=

x1

x2
+ ε

(y1x2 − x1y2)

x2
2

,

(x+ εy) = (x− εy).

We can also consider a square of the dual modulus x+ εy as

|z|2 = zz = (x+ εy)(x+ εy) = x2, (1)

but this definition (1) does not depend on the imaginary part y.
To develop a new definition of dual number modulus, we rely
on their matrix representation. It turns out that any manipula-
tions with dual numbers x+ εy can be replaced by operations

on a 2× 2 matrix of the form
(
x y
0 x

)
.

We exploit this isomorphism and define the dual modulus
as the subordinate norm of the corresponding matrix in the
vector space K2×2. The final equation for the dual modulus
is:

∥z∥ =
∣∣∣y
2

∣∣∣+√
x2 +

(y
2

)2

. (2)

Equation (2) is essential for batch normalization.

2.2. Cauchy-Riemann Conditions for Function of Dual
Variables

Originally, the Cauchy–Riemann equations are certain criteria
needed for a complex function f(x+iy) = u(x, y)+iv(x, y)
to be holomorphic (complex differentiable), where u and v
are real-valued functions of two variables. These equations
impose restrictions for u(x, y) and v(x, y):

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
. (3)

There are analogous conditions for a dual-valued function
f(x + εy) = u(x, y) + εv(x, y) to be holomorphic (in sense
of dual numbers):

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= 0. (4)

Using Taylor series expansion for dual-valued step, one can
show that the above restrictions imply that a holomorphic
function of the dual variable is expanded to the following
form:

f(x+ εy) = f(x) + εyf ′(x). (5)

Property (5) is called automatic differentiation, mentioned in
Introduction. It means that, in order to calculate a derivative
of the function f at the point x, we just need to find its value
ofx+ε and take the imaginary part of the result Im(f(x+ε)).
In this paper, we consider dual functions and operators the
analytic continuation of real ones. Therefore, we assume that
f(x) is real for any real x. To be clear, this is a sufficient but
not a necessary condition for a function to be holomorphic.

3. METHODOLOGY

In this section we define main operations needed for neural
networks: linear layer and batch normalization, which satisfy
the Cauchy–Riemann conditions (4) and are derived using the
proposed dual modulus (2). We also describe the procedure
for dual-valued input generation.

3.1. Data Representation in the Hypercomplex Algebra

Although operations on complex numbers are integrated into
modern frameworks such as PyTorch, dual numbers are not
supported by any framework. In this work, we represent com-
plex and dual tensors as two-channel real-valued tensors. We
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use tensors of this structure as arguments. Complex- and dual-
valued layers return values in the same form. The peculiari-
ties of every type of algebras are taken into consideration by a
specific realization of network operators. We also emphasize
that, thanks to the real-valued representation, we do not need
to implement any complex- or dual-valued gradient.

3.2. Convolution

Convolution of an input is needed to extract a feature map
and pass the output to the next layer. The formula for a 2D
real-valued convolution is given below:

(X ∗A+b)i,j =

N∑
n=0

M∑
m=0

Xi+n,j+mAN−n,M−m+bi,j , (6)

where X , A, b are respectively the input, weights and bias
(shift), ∗ is a convolution mark, N×M is a kernel size. In the
case of complex-valued neural networks, i.e. when weights
compose a complex matrix A = Ar + iAi and the input and
bias are also complex-valued Z = X + iY and b = br + ibi,
complex-valued convolution is expressed through four real-
valued convolutions:

Z∗A+b = (X∗Ar−Y ∗Ai+br)+i(Y ∗Ar+X∗Ai+bi), (7)

because of distributive properties, as mentioned in [17]. The
extension of (7) to the dual domain (i ⇒ ε) is

Z ∗A+ b = X ∗Ar + br + ε(Y ∗Ar +X ∗Ai + bi). (8)

It is easy to notice that (8) has three real-valued convolution,
which leads to the theoretical 25% inference speed-up, com-
pared to the complex convolution for the same number of pa-
rameters. One can see, that formula (8) in general case of
weight matrix A does not satisfy equations (4). To make sure
a dual convolution is holomorphic, we must impose a restric-
tion Im(A) ≡ 0. This condition is based on the fact that, for
a linear function f(x+ εy) = arx+ br + ε(ary + aix+ bi)
the limits of its increment, as the argument approaches zero
along the real axis or the imaginary axis, are equal if and only
if the condition ai = 0 is true. These limits are:

lim
∆x→0

f(x+∆x+ εy)− f(x+ εy)

∆x
= ar + εai (9)

lim
ε∆y→0

f(x+∆x+ ε(y +∆y))− f(x+ εy)

ε∆y
= ar. (10)

Thus, we define a dual holomorphic convolution, which sat-
isfies (4) as following:

Z ∗A+ b = X ∗Ar + br + ε(Y ∗Ar + bi). (11)

The definition (11) implies that only two real-valued convo-
lution are needed. In other words, dual holomorphic convolu-
tion is potentially 2 and 1.5 times faster than the correspond-
ing complex and dual operators. We should emphasize that
conditions (4) do not affect bias b, and it is still dual-valued.

3.3. Batch Normalization

According to [16], batch normalization has the following def-
inition:

x̌ = γ
x− E[x]√
V ar[x] + δ

+ β, (12)

where x, E[x], V ar[x] are the input, its mean and standard
deviation, δ = 10−5 is needed to avoid division by zero. γ
and β are trainable scale and shift. The standard deviation
V ar[x] is a measure the difference between the value of an
observation and the mean of the population E[x]. To general-
ize (12) to the non-real case, we propose to calculate distance
(modulus) between dual-valued input and its mean value via
formula (2). In the case of complex neural networks, we use
the standard formula of complex number modulus

√
x2 + y2.

In addition, for generalized batch normalization γ and β are
two-component dual or complex numbers.

It should be noted that, in order to make this layer holo-
morphic, we just need to set Im(γ) ≡ 0, because division by√
V ar[x] is real-valued.

3.4. Generation of Dual-valued Input

Just like complex ones, dual numbers are essentially pairs of
real values. Basing on this similarity, we propose to use the
complex-valued input in both dual and complex neural net-
works. In this paper, we use two techniques to convert real
input to the complex format: Fourier transform for the Music-
Net dataset and constant-Q transform (CQT ) for the G2Net
dataset.

We also develop an alternative variant of transformation
based on equation (5). We notice that in (5) Im(f(x + εy))
is mainly determined by the derivative of the function at the
same point as Re(f(x + εy)) = f(x). Basing on this, we
propose to transform real-valued numbers of input to the dual
numbers as follows:

Input ⇒ Input+ ε(Input)′, (13)

where (Input)′ is a function of Input, which in a sense we
call a derivative of that input. The specific definition of the
derivative depends on the task. For example, if input is a time
series then it seems natural to define the derivative with re-
spect to time as the difference of signal strength at adjacent
time points.

4. EXPERIMENTAL RESULTS

To check our hypothesis, we carry out several experiments
on classification problems: gravitational wave detection and
music transcription task.
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4.1. Gravitational Wave Detection

This dataset consists of simulated noised signals similar to
ones recorded by a system of three ground-based laser in-
terferometers: LIGO Hanford, LIGO Livingston, and Virgo.
These signals are generated during cosmic events such as
black holes absorbing neutron stars. We leverage CQT algo-
rithm as preprocessing, because it is supposed to be efficient
for analysis of gravitational waves [18]. It transforms time
series into a frequency map consisting of real and imagi-
nary parts. While complex and dual-valued networks take
both parts, input of the holomorphic dual-valued network is
formed differently. The modulus of CQT frequency por-
trait is used as a real component, and its derivative is used
as an imaginary part (13). For this task we used Sobel
operator[19] as discrete differentiation analogue. To clas-
sify whether a wave is present at the spectrogram we use
ResNet18 [20], where all the layers are replaced by the corre-
sponding complex/dual/holomorphic operators. Also before
fully-connected layer net has 512 channels for both real and
imaginary parts, to handle all information standard linear
layer is replaced by sequentially connected concatenation op-
erator and linear with two times more input channels (1024).
In terms of memory efficiency, holomorphic dual-valued net-
works are about the same size as real-valued ones, while dual
and complex models are two times larger.

Table 1. Average precision on the G2Net dataset.
Model Input BN AP, %
Real |CQT | Real 76.5

Complex CQT Complex 78.7
Dual CQT Complex 73.5
Dual CQT Dual 79.2
Dual |CQT | + ε|CQT |′ Dual 51.73

HDual CQT Dual 77.0
HDual |CQT | + ε|CQT |′ Dual 77.6
HDual |CQT | + ε|CQT |′ HDual 78.4

From the Table 1 it is clear that proper combination of
batch normalization operator alongside preprocessing show
the best results, furthermore all of these combinations outper-
form real-valued network.

4.2. Music Transcription Task

In this part we show the results of automatic music transcrip-
tion. The goal of this task is classification of the notes in mu-
sic recordings. The experiments are performed on the Music-
Net dataset [21]. We adopt the DeepConvNet architecture de-
veloped in [17] and use frequency representation of the data,
which we get after Fast Fourier transform (FFT). For the real
neural networks, we consider the real and imaginary compo-
nents of the data as separate channels. In the case of dual and
complex-valued models, we use output of FFT without any

changes. We use equation (13) to generate data for holomor-
phic dual neural networks. To do that we assign the real part
to absolute value of the output of FFT and the imaginary com-
ponent to derivative of the this absolute value, which is calcu-
lated via finite deference. This derivative reflects changes in
intensity of the spectrum.

For each type of model’s algebra we use respective neural
operators, which were described in the Methodology section.
The results are summarized in Table 2.

Table 2. Results of experiments on the MusicNet dataset.
Model Average Precision, % Inference time, ms
Real 68.9 0.82

Complex 72.5 3.56
Dual 73.0 3.16

HDual 71.2 2.86

From Table 2, we can observe that the best average pre-
cision is achieved by the dual-valued neural network. Mean-
while, the precision of the complex-valued model is close to
the value reported in [17]. These results show that a dual-
valued neural network has the best accuracy-performance
trade-off, because it is faster than a complex-valued model
and more accurate than other models. We consider dual-
valued neural networks to be promising solutions for the
tasks with the complex representation of input data.

5. CONCLUSION

Neural networks based on complex numbers tend to become
a modern solution of tasks with complex-valued data. As
discussed in this paper, models on dual numbers algebra de-
serve just as much attention of researchers. These models are
capable to reach better metrics than their real-valued equiv-
alents. As complex- and dual-valued models gain popular-
ity, the question of balancing efficiency and performance re-
quires greater efforts. Essentially, choosing type of algebra
is a two-criteria problem. Holomorphic dual models offer a
reasonable solution. As other networks on the second order
algebras, they show better metrics than corresponding real-
valued models, being just a little behind the dual models. At
the same time they offer a high theoretical performance im-
provement. In practice inference speed-up depends on the
architecture and is 10-25% compared to dual-valued models,
which may be worth a trade-off of some accuracy. In addition,
holomorphic models have about half as many parameters as
dual models of the same architecture. These advantages make
holomorphic dual networks a viable option in case of hard-
ware limitations.
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