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Abstract: One-dimensional regularized systems of equations for the general (multi-velocity and
multi-temperature) and one-velocity and one-temperature compressible multicomponent gas mixture
dynamics are considered in the absence of chemical reactions. Two types of the regularization are
taken. For the latter system, diffusion fluxes between the components of the mixture are taken into
account. For both the systems, the important mixture entropy balance equations with non-negative
entropy productions are valid. By generalizing a discretization constructed previously in the case of
a single-component gas, we suggest new nonstandard symmetric three-point spatial discretizations
for both the systems which are not only conservative in mass, momentum, and total energy but also
satisfy semi-discrete counterparts of the mentioned entropy balance equations with non-negative
entropy productions. Importantly, the basic discretization in the one-velocity and one-temperature
case is not constructed directly but by aggregation of the discretization in the case of general mixture,
and that is a new approach. In this case, the results of numerical experiments are also presented for
contact problems between two different gases for initial pressure jumps up to 2500.

Keywords: regularized equations for gas mixture dynamics; multi-velocity and multi-temperature
gas mixture; one-velocity and one-temperature gas mixture; nonstandard symmetric three-point
spatial discretization; semi-discrete entropy balance equation.
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1. Introduction

The compressible multicomponent gas mixture dynamics is of great theoretical and ap-
plied interest, and there exist various complicated systems of partial differential equations
to describe it under different assumptions; in particular, see [1–6]. An important point of
both physical and mathematical theories of these equations is the fulfillment of the entropy
balance equation with non-negative entropy production, which confirms their physical
correctness and makes it possible to prove basic a priori estimates of solutions.

A large amount of numerical methods for solving single-component gas dynamics
systems of equations were developed; in particular, see [7–9]. Among them, there are
various methods based on preliminary regularizations of these equations. These include
methods based on the so-called quasi-gasdynamic (QGD) and quasi-hydrodynamic (QHD)
regularizations presented in detail in monographs [10–12] and many subsequent papers, as
well as on other regularizations [13–15], etc. The QGD and QHD equations for the general
(multi-velocity and multi-temperature) as well as one-velocity and one-temperature gas
mixture dynamics were developed, studied and applied, in particular, in [11,16–22], includ-
ing the validity of the entropy balance equation with non-negative entropy production
in [16,19,22].
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The construction of entropy correct discretizations of gas dynamics systems of equa-
tions is of great interest; in particular, see [23–27] and references therein. In [28], a symmet-
ric three-point version of the 1D QGD-regularized gas dynamics equations for a perfect
polytropic single-component gas was constructed, which was conservative in the mass,
momentum, and total energy and satisfied the semi-discrete entropy balance equation
with a non-negative entropy production. This was achieved, in particular, by introducing
non-standard nonlinear averages of the sought functions. In this discretization, the main
sought functions (the density, velocity, and specific internal energy of the gas) were defined
on a common main mesh, whereas the mass, momentum, and total energy fluxes were
defined on another auxiliary mesh. Subsequently, similar discretizations were developed
in the case of general equations of state of a gas [29] as well as the multidimensional
case [30]. Practical testing of these discretizations was accomplished in [29,31]. Recall that
it is well-known that a regularization is necessary to ensure stability of symmetric spatial
discretizations combined with an explicit discretization in time, and the QGD and QHD
regularizations applied by us are not trivial and physically motivated [10–12].

In this paper, we consider 1D regularized systems of equations for general, multi-
velocity and multi-temperature, as well as one-velocity and one-temperature compressible
multicomponent gas mixture dynamics of perfect polytropic gases in the absence of chem-
ical reactions. The mixtures are supposed to be homogeneous; i.e., all the components
occupy one and the same volume [2]. In the latter case, where the velocities and temper-
atures (but not densities) of all components are assumed to be the same, diffusion fluxes
between mixture components of type [1] are taken into account. We develop the mentioned
discretization from [28] further for these systems. The latter system is of primary interest
for us in this paper, but first, we need to consider the former system and its discretization
as well, in accordance with our aggregation approach. The systems like our main one can
be applied to solve numerically gas dynamics problems with contacts between different
gases [19–21], etc. Vast literature is devoted to problems of such kind, and we refer the
reader to the recent paper [32] for a brief review and a lot of references. Note that the study
of the entropy properties of numerical methods for gas mixtures is a complicated matter,
and only a few recent papers deal with this subject [33].

For both the systems, we construct non-standard symmetric three-point spatial dis-
cretizations, which are not only conservative in the mass, momentum, and total energy but
also satisfy the semi-discrete entropy balance equations with non-negative entropy produc-
tions. Importantly, in the one-velocity and one-temperature case, the basic discretization
is not constructed directly but rather by aggregation of the discretization in the case of
general mixture, and that is a new approach. Additionally, an adequate discretization
is accomplished for the terms associated with the diffusion fluxes between the mixture
components to guarantee the non-negative entropy production. Notice that both the QGD
and QHD regularizations are considered in a unified way (by introducing a parameter into
the equations like in [22]) that essentially shortens the overall study.

The paper is structured as follows. In Section 2, the 1D regularized system of equations
for the dynamics of the general (multi-velocity and multi-temperature) multicomponent gas
mixture is presented in the form of mass, momentum, and total energy balance equations for
the mixture components. For it, the balance equations for the kinetic and internal energies of
the components together with the mixture entropy balance equation with the non-negative
entropy production are given. The balance equations for the mass, momentum, and total
energy of the mixture are also written. In Section 3, the 1D regularized system of equations
for the dynamics of the one-velocity and one-temperature multicomponent gas mixture
is given, additionally taking into account diffusion fluxes between the components. A
connection between the solutions to the equations for dynamics of a single-component gas
and such a mixture of gases is indicated. For the one-velocity and one-temperature mixture,
the corresponding balance equations for the kinetic and internal energies of the mixture
as well as the mixture entropy balance equation with a non-negative entropy production
are given.
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In Section 4, first, meshes, mesh operators and a set of formulas for the mesh analysis
are introduced. Then, a non-standard three-point spatially symmetric discretization of the
regularized system of equations for the general multicomponent gas mixture dynamics
is performed. Semi-discrete balance equations for the kinetic and internal energies of the
components are given. Most importantly, the semi-discrete balance equation for the mixture
entropy with a non-negative entropy production is derived in Theorem 1. Semi-discrete
balance equations for the momentum and the total energy of the mixture are also presented.
In Section 5, based on the component mass balance equation and the last two mentioned
equations, a discretization of the regularized system of equations for the dynamics of
the one-velocity mixture of gases is constructed including the diffusion fluxes between
the components of the mixture. A connection between the solutions to the semi-discrete
equations for dynamics of a single-component gas and the homogeneous mixture of gases
is described. Semi-discrete balance equations for the mass, kinetic and internal energies
of the mixture are given. The main result (Theorem 2) concerns the derivation of a semi-
discrete balance equation for the one-velocity and one-temperature mixture entropy with
a non-negative entropy production. Below, we omit words “and one-temperature” for
brevity. The final Section 6 is devoted to numerical experiments in the case of the one-
velocity binary mixture, more precisely, the contact between two different gases. Numerical
examples concern three cases of subsonic and partially supersonic flows with shock waves,
for initial data with pressure jumps up to 2500, well-known in the literature [34–36], and
both the QGD and QHD regularizations are tested. Appendix A provides a proof of an
important representation for the regularizing terms (together with heat source terms) in
the semi-discrete entropy production, ensuring their non-negativity.

2. One-Dimensional (1D) Regularized System of Equations for Dynamics of General
Multicomponent Gas Mixtures

A spatially 1D regularized system of equations describes the dynamics of a general
multicomponent gas mixture and consists of the following balance equations for the mass,
momentum, and total energy of the mixture components

∂tρα + ∂x
(
ρα(uα − w`α)

)
= 0, (1)

∂t(ραuα) + ∂x{ρα(uα − w`α)uα}+ ∂x pα = ∂xΠ`α + Su,α +
(
ρα − `τ∂x(ραuα)

)
fα, (2)

∂tEα + ∂x{(Eα + pα)(uα − w`α)} = ∂x(−q`α + Π`αuα) + SE,α + ρα(uα − w`α) fα + Qα, (3)

where α = 1, K (i.e., α = 1, . . . , K) and K > 2 is the amount of mixture components.
The main sought functions ρα > 0, uα and θα > 0 are the density, velocity and absolute
temperature of the mixture component α, α = 1, K, depending on (x, t). Thus, it is assumed
that each gas component has its own velocity and temperature. Here ∂t and ∂x are the
partial derivatives in t ∈ [0, T] and x ∈ [−X, X]; the cases x ∈ R, [−X,+∞) or (−∞, X] are
similar. We use the perfect polytropic gas equations of state and the standard expression
for the total energy of the components

pα = (γα − 1)ραεα = Rαραθα, εα = cVαθα, Eα = 0.5ραu2
α + ραεα, (4)

where pα and εα are the pressure and specific internal energy of the component α, with the
physical constants γα > 1, cVα > 0 and Rα = (γα − 1)cVα, α = 1, K. In addition, Rα = R0

mα
,

where R0 is the universal gas constant (the Boltzmann constant) and mα is the molecular
mass of gas α.

This regularization is the so-called quasi-gasdynamic (QGD) for ` = 1 or simpler
quasi-hydrodynamic (QHD) for ` = 0 [16]. Hereafter, by introducing the parameter `, we
can treat both regularizations in a unified manner. The more universal former one is used
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for flows at any Mach numbers, while the latter is mainly used for subsonic and transonic
flows. The regularizing velocities have the form

w`α = `
τ

ρα
uα∂x(ραuα) + ŵα, ŵα =

τ

ρα
(ραuα∂xuα + ∂x pα − ρα fα). (5)

The viscous stress Π`α and the heat flux q`α are given by the formulas

Π`α = να∂xuα + Πτ
`α, Πτ

`α = ραuαŵα + `τ{uα∂x pα + γα pα∂xuα − (γα − 1)Qα}, (6)

q`α = −κα∂xθα + `qτ
α , −qτ

α = τ
{

ραu2
α

(
∂xεα −

pα

ρ2
α

∂xρα

)
−Qαuα

}
, (7)

where να > 0, κα > 0 and τ > 0 are the coefficients of viscosity and heat conductivity
(physical or artificial) and the relaxation (regularization) parameter which may depend
on the sought functions (here, their specific form is not essential). The terms να∂xuα

and −κα∂xθα are of the Navier–Stokes–Fourier type, whereas the terms Πτ
`α and qτ

α are
relaxation (regularizing) ones. The densities of body forces fα and intensities of heat sources
Qα > 0 are given functions.

In the case of the binary mixture (K = 2), such equations were considered in [16]
(in the multidimensional version). The above equations for the multicomponent mixture
generalize them in a natural way. Note that

w1α =
τ

ρα

(
∂x(ραu2

α) + ∂x pα − ρα fα

)
, w0α = ŵα. (8)

The written equations form a set of standard regularized equations for the balance
of mass, momentum, and total energy of individual components of the mixture, where
Su,α and SE,α are the additional exchange terms. They depend on the sought functions
{ρα, uα, θα}K

α=1 and satisfy the relations

〈Su,α〉 = 0, 〈Su,αuα〉 6 0, 〈SE,α〉 = 0,
〈 1

θα
(SE,α − Su,αuα)

〉
> 0. (9)

Hereafter, 〈·〉 denotes the summation operation over the index α = 1, K. The second
relation is not used in this paper.

In the case of the binary mixtue (K = 2), for any γα > 1, α = 1, 2, the exchange terms
can be specified, in particular, by means of formulas of the molecular–kinetic type [16]

Su,α = ναβρα(û− uα), SE,α = ναβ(Êα − Eα), û =
m1u1 + m2u2

m1 + m2
, Êα =

1
2

ραû2 + cVαρα θ̂α,

θ̂α = θα + C(m)(γα − 1)
{3

2
(θβ − θα) +

mβ

4R0
(u1 − u2)

2
}

, C(m) =
2m1m2

(m1 + m2)2 ,

where ναβ > 0 is the frequency with which molecules of gas α collide (bump into) molecules
of gas β = 3− α, α = 1, 2. Here, it is assumed that the following balance equality holds

ρ1

m1
ν12 =

ρ2

m2
ν21 = Ncol ,

where Ncol is the total number of collisions between the molecules of gases 1 and 2, and
consequently, relations (9) are valid; see their derivation in [16]. Formulas for ν12 and ν21
can be found in [11,37] and are not reproduced here.

In the general case K > 2, in particular, the formulas of type [38] can be used

Su,α = 〈Kαβ(uβ − uα)〉β, SE,α = 〈cαβ(θβ − θα)〉β + 〈bαβKαβ(uβ − uα)
2〉β + Su,αuα.

Here, 〈·〉β is the summation operation over the index β = 1, K.
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For Kαβ = Kβα, cαβ = cβα and bαβ + bβα = 1 for any α 6= β, swapping the indexes α
and β, one derives

〈〈Kαβ(uβ − uα)〉β〉 = 〈〈Kαβ(uα − uβ)〉β〉 = 0, 〈〈cαβ(θβ − θα)〉β〉 = 0,

〈〈Kαβ(uβ − uα)〉βuα〉 =
1
2
〈〈

Kαβ

(
(uβ − uα)uα + (uα − uβ)uβ

)
〉β〉 = −

1
2
〈〈Kαβ(uβ − uα)

2〉
β

〉
,

〈〈
bαβKαβ(uβ − uα)

2〉
β

〉
=

1
2
〈〈
(bαβ + bβα)Kαβ(uβ − uα)

2〉
β

〉
=

1
2
〈〈

Kαβ(uβ − uα)
2〉

β

〉
,〈 1

θα

〈
cαβ(θβ − θα)

〉
β

〉
=

1
2

〈〈
cαβ

( 1
θα

(θβ − θα) +
1
θβ

(θα − θβ)
)〉

β

〉
=

1
2

〈〈 cαβ

θαθβ
(θβ − θα)

2
〉

β

〉
.

Consequently, relations (9) are valid once again provided that Kαβ > 0, bαβ > 0 and
cαβ > 0 for any α 6= β.

In the absence of the regularization, i.e., for τ = 0, the above regularized system
of equations is reduced to the 1D compressible Navier–Stokes–Fourier-type system for
multicomponent flows for να > 0 and κα > 0 or the Euler-type one for να = κα = 0,
α = 1, K; in particular, see [6,38–40] and references therein.

Now, we present some important balance equations that follow from the basic ones.

Lemma 1. Let j`α = ρα(uα − w`α) be the regularized mass flux of the mixture component α. The
following balance equations for the kinetic and internal energies of the mixture components hold

0.5∂t(ραu2
α) + 0.5∂x(j`αu2

α) + (∂x pα)uα

= (∂xΠ`α)uα + Su,αuα +
(
ρα − `τ∂x(ραuα)

)
fαuα, (10)

∂t(ραεα) + ∂x(j`αεα) + pα∂xuα = ∂x(−q`α + pαw`α)

+Π`α∂xuα + SE,α − Su,αuα − ραŵα fα + Qα (11)

for (x, t) ∈ [−X, X]× [0, T], where α = 1, K.

Proof. To derive these standard type equations, we first multiply the momentum balance
equation for the components (2) by uα and use the formulas of the same type(

∂t(ραuα)
)
uα = 0.5∂t(ραu2

α) + 0.5(∂tρα)u2
α, (12)(

∂x(jαuα)
)
uα = 0.5∂x(jαu2

α) + 0.5(∂x jα)u2
α.

Applying the mass balance equation for the components (1), we obtain Equation (10).
We subtract it from the balance equation for the total energy of the components (3). By

differentiating with respect to x the products pαuα and Π`αuα and using the first Formula (5),
we derive the balance equation for the internal energy of the components (11).

Let us introduce the total density, the specific entropies of the components and the
specific total entropy (the mixture entropy)

ρ = 〈ρα〉, sα = s̄α − Rα ln
ρα

ρ̄α
+ cVα ln

θα

θ̄α
, s =

〈ρα

ρ
sα

〉
, (13)

where s̄α, ρ̄α > 0 and θ̄α > 0 are constants (reference values of sα, ρα and θα). Here, Cα := ρα
ρ

are the mass concentrations of the mixture components; they will arise below as well.
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The entropy balance equation for the general gas mixture has the form

∂t(ρs) + ∂x〈j`αsα〉 = ∂x

〈 1
θα

(κα∂xθα − `qτ
α)
〉

+
〈κα

θ2
α
(∂xθα)

2 +
να

θα
(∂xuα)

2
〉
+
〈 1

θα
(SE,α − Su,αuα)

〉
+
〈 ρα

τθα
ŵ2

α + `τ
Rα

ρα

{
∂x(ραuα)

}2
+ `τ

cVα ρα

θ2
α

{
(γα − 1)θα∂xuα + uα∂xθα −

Qα

2cVαρα

}2〉
+
〈Qα

θα

(
1− `τ

(γα − 1)Qα

4pα

)〉
(14)

for (x, t) ∈ [−X, X]× [0, T]. For K = 2, it was derived in [16] (in the multidimensional case),
and the proof was based on a similar equation in the single-component case (K = 1) [11,12]
(see also [41]); the derivation in the case K > 2 is actually the same.

The sum of all terms on the right-hand side of Equation (14), except for the divergent
first one, is the entropy production (or the dissipative function). Among these terms, the sum〈κα

θ2
α
(∂xθα)

2 +
να

θα
(∂xuα)

2
〉
+
〈 1

θα
(SE,α − Su,αuα)

〉
+
〈Qα

θα

〉
is the Navier–Stokes–Fourier entropy production, and all its three summands (each in the
angular brackets) are non-negative, taking into account the last property (9).

The remaining terms with the factor τ are relaxation ones. The penultimate term on the
right in Equation (14) contains the sum of three quadratic terms with positive coefficients
under the sign 〈·〉, so that term is non-negative. The last term on the right in Equation (14)
is non-negative for ` = 0, as well as for ` = 1 and under the conditions τ(γα − 1)Qα 6 4pα,
α = 1, K, and then, the total entropy production is also non-negative.

This entropy balance equation and the indicated property of the entropy production
non-negativity remain valid for τ > 0, where one should switch to another form for the
first relaxation term:

ρα

τθα
ŵ2

α =
τ

ραθα
(ραu∂xu + ∂x pα − ρα f )2.

Recall that with the help of the specific entropy of the components, the expression for
the heat flux (7) can be written in a shortened form

−q`α = κα∂xθα + τ(ραθαu2
α∂xsα − uαQα);

however, this form is not applied below.
Applying the operation 〈·〉 to the balance Equations (1)–(3) for the mass, momentum,

and total energy of the mixture components (i.e., summing them over the index α = 1, K),
we obtain their corollaries which are the balance equations for the mass, momentum and
total energy of the mixture

∂tρ + ∂x〈ρα(uα − w`α)〉 = 0, (15)

∂t〈ραuα〉+ ∂x〈ρα(uα − w`α)uα〉+ ∂x p = ∂xΠ` +
〈(

ρα − `τ∂x(ραuα)
)

fα

〉
, (16)

∂tE + ∂x〈(Eα + pα)(uα − w`α)〉 = ∂x(−q` + 〈Π`αuα〉) + 〈ρα(uα − w`α) fα〉+ 〈Qα〉. (17)

Herein, the aggregated (or total, i.e., for the mixture) pressure, total energy, viscous
stress and heat flux are expressed by the formulas

p = 〈pα〉, E = 〈Eα〉, Π` = 〈Π`α〉, q` = 〈q`α〉. (18)
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The first of these is Dalton’s law for mixtures. The exchange terms have been cancelled
out due to the equalities 〈Su,α〉 = 0 and 〈SE,α〉 = 0, see (9). These equations are used in the
next section.

Recall that, for the purposes of discretization, Equations (1) are often replaced by
Equation (15) and equations for K− 1 concentrations

∂t(ρCα) + ∂x
(
ρCα(uα − w`α)

)
= 0, α = 1, K− 1,

although in this paper, we will not use this approach.

3. One-Dimensional (1D) Regularized System of Equations for the Dynamics of
One-Velocity Multicomponent Gas Mixtures in the Presence of Diffusion Fluxes

In this section, we consider the model of the one-velocity mixture, where the velocities
and temperatures of all components are assumed to be the same, which drastically reduces
the number of sought functions. Let also fα = f , α = 1, K. Additionally, diffusion fluxes
between the mixture components are introduced.

As in [19,22], we write the aggregated regularized system of equations for the one-
velocity mixture dynamics (in the diffusion approximation), which is obtained from
Equations (1), (16) and (17) after taking uα = u and θα = θ for α = 1, K, and it consists of
the balance equations for the mass of the component and the momentum and total energy
of the mixture

∂tρα + ∂x
(
ρα(u− w`α) + dα

)
= 0, α = 1, K, (19)

∂t(ρu) + ∂x〈ρα(u− w`α)u〉+ ∂x p = ∂xΠ` +
(
ρ− `τ∂x(ρu)

)
f , (20)

∂tE + ∂x〈(Eα + pα)(u− w`α)〉 = ∂x(−q` + Π`u) + 〈ρα(u− w`α)〉 f + Q, (21)

with the additional inclusion of the diffusion flux dα between the component α and the rest
of the components. Now, the main sought functions are the component densities ρα > 0,
α = 1, K, and their common velocity u and temperature θ > 0. Still, (x, t) ∈ [−X, X]× [0, T];
also Q = 〈Qα〉.

The pressure, specific internal and total energies of the components take a slightly
simplified form

pα = (γα − 1)ραεα = Rαραθ, εα = cVαθ, Eα = 0.5ραu2 + ραεα, (22)

and the total density and corresponding quantities appearing in the equations for the
one-velocity mixture are as follows

ρ = 〈ρα〉, p = 〈pα〉 = Rρθ, ε =
〈ρα

ρ
εα

〉
= cVθ, E = 〈Eα〉 = 0.5ρu2 + ρε, (23)

with the coefficients
R :=

〈ρα

ρ
Rα

〉
, cV :=

〈ρα

ρ
cVα

〉
. (24)

We emphasize that here, R and cV are functions rather than constants in contrast to the
single-component case (provided that there are different coefficients among Rα and cVα).
The expression for p can be rewritten in the standard form

p = (γ− 1)ρε with γ :=
R
cV

+ 1.

Note that if γ1 = . . . = γK, then also γ = γ1 even for non-coinciding Rα.
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In these equations, according to the performed aggregation procedure, we have

w`α = `
τ

ρα
u∂x(ραu) + ŵα, ŵα =

τ

ρα
(ραu∂xu + ∂x pα − ρα f ), (25)

Π` = ν∂xu + Πτ
` , Πτ

` = u〈ραŵα〉+ `τ{u∂x p + 〈γα pα〉∂xu− 〈(γα − 1)Qα〉}, (26)

q` = −κ∂xθ + `qτ + qd, (27)

−qτ = τ
{

u2(〈cVαρα〉∂xθ − θ∂x〈Rαρα〉
)
−Qu

}
= τ

{
u2(cVρ∂xθ − θ∂x(Rρ)

)
−Qu

}
, (28)

where ν := 〈να〉 and κ := 〈κα〉, and the appearance of the additional term qd is related
to the introduction of diffusion fluxes. We emphasize that a number of new functions
(including w`α and ŵα) here retain their notation from the previous section.

As in [19,22], the introduction of total regularizing velocities

w` :=
〈ρα

ρ
w`α

〉
= `

τ

ρ
u∂x(ρu) + ŵ, ŵ :=

〈ρα

ρ
ŵα

〉
=

τ

ρ
(ρu∂xu + ∂x p− ρ f ) (29)

makes it possible to simplify the form of the balance equations for the momentum and total
energy of the one-velocity mixture (20) and (21):

∂t(ρu) + ∂x
(
ρ(u− w`)u

)
+ ∂x p = ∂xΠ` +

(
ρ− `τ∂x(ρu)

)
f , (30)

∂tE + ∂x
(
0.5ρu2(u− w`) + 〈ραcpαθ(u− w`α)〉

)
= ∂x(−q` + Π`u) + ρ(u− w`) f + Q, (31)

where cpα = Rα + cVα = γαcVα. However, for the purpose of discretization, we prefer to
use the original form of these equations below. Recall that cVα and cpα are the specific
heat capacities at constant volume and pressure and cpαθ is the specific enthalpy of the
component α = 1, K. Moreover, in (26), we have 〈ραŵα〉 = ρŵ.

In the absence of the regularization, i.e., for τ = 0, the presented regularized system
of equations for the one-velocity mixture dynamics is reduced to the 1D compressible
Navier–Stokes–Fourier-type system for one-velocity and one-temperature multicomponent
flows for να > 0 and κα > 0 or the Euler-type one for να = κα = 0, α = 1, K, in particular,
see [1,4,33] and references therein.

In these equations, we define the terms related to the diffusion fluxes between the
components by the following formulas

−dα := d0
(
〈∂x(Gα − Gβ)〉β + bα∂xθ

)
= d0

(
∂x(KGα − G) + bα∂xθ

)
with G := 〈Gα〉, (32)

qd = 〈(Gα + K−1bαθ)dα〉, (33)

Gα := εα − sαθ +
pα

ρα
= (cpα − sα)θ, sα = s̄α − Rα ln

ρα

ρ̄α
+ cVα ln

θ

θ̄
, (34)

where Gα and sα are the Gibbs potential and specific entropy of the component α = 1, K
(for example, see [42]).

The quantities d0 > 0 and bα are not specified in this paper; they can depend on the
sought functions, and it is only assumed that 〈bα〉 = 0, whereas s̄α, ρ̄α > 0 and θ̄ > 0 are
constants (reference values of sα, ρα and θ). The property 〈dα〉 = 0 plays an important role
and immediately follows from definitions (32) and the condition 〈bα〉=0.

Note that the formula −qτ = τ
(
θu2〈ρα∂xsα〉 −Qu

)
is valid.

In the case of the binary mixture (K = 2) with dα = 0, α = 1, 2, the above equations for
the dynamics of the one-velocity mixture were obtained in [19] (in the multidimensional
case). The general multicomponent case (K > 2) with the introduction of dα and qd has
recently been considered in [22] for ` = 0, 1. The above quantities dα and qd generalize
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those proposed in [1] in the case of the binary mixture; this particular case is discussed in
more detail in [22].

Now, we pass to several properties of the above system of equations for the one-
velocity gas mixture dynamics.

Proposition 1. Let the functions ρ > 0, u and θ > 0 be a solution to the following regularized
system of equations for a single-component gas dynamics

∂tρ + ∂x
(
ρ(u− w`)

)
= 0, (35)

∂t(ρu) + ∂x
(
ρ(u− w`)u

)
+ ∂x p = ∂xΠ` +

(
ρ− `τ∂x(ρu)

)
f , (36)

∂tE + ∂x
(
(E + p)(u− w`)

)
= ∂x(−q` + Π`u) + ρ(u− w`) f + Q (37)

for (x, t) ∈ [−X, X]× [0, T], where p = (γ− 1)ρε = Rρθ, ε = cVθ and E = 0.5ρu2 + ρε with
constant R > 0 and cV > 0 together with

w` = `
τ

ρ
u∂x(ρu) + ŵ, ŵ =

τ

ρ
(ρu∂xu + ∂x p− ρ f ), (38)

Π` = ν∂xu + Πτ
` , Πτ

` = uρŵ + `τ{u∂x p + γp∂xu− (γ− 1)Q}, (39)

q` = −κ∂xθ + `qτ , −qτ = τ
{

u2(cVρ∂xθ − Rθ∂xρ
)
−Qu

}
(40)

with τ = τ(ρ, ε, u) > 0, ν = ν(ρ, ε, u) > 0 and κ = κ(ρ, ε, u) > 0.
Then, for any constant 0 < Cα < 1, α = 1, K, such that 〈Cα〉 = 1, the functions ρα = Cαρ,

α = 1, K, u and θ are a solution to the regularized system of equations for the one-velocity mixture
dynamics (19)–(28) with dα = 0, γα = γ, Rα = R and cVα = cV , α = 1, K, as well as
τ = τ(ρ, ε, u), ν = ν(ρ, ε, u) and κ = κ(ρ, ε, u) with ρ and ε given by formulas (23).

Proof. Under the hypotheses of the proposition, Formulas (22)–(24) are valid. Moreover,
we have ŵα = ŵ and w`α = w` in definition (25), see definition (38), so Formulas (39)
and (40) coincide with the corresponding formulas for the mixture (26)–(28). This means
that the momentum and total energy balance equations (36) and (37) coincide with the
corresponding equations for the mixture (30) and (31). Finally, multiplying the mass balance
Equation (35) by Cα yields the corresponding equation for the mixture components (19).

This proposition expresses the natural fact that the formal decomposition of a single-
component gas into K components with proportional densities and the same temperatures,
velocities and physical constants is a special (trivial) case of the one-velocity mixture.
In particular, Proposition 1 is useful for checking various properties of solutions to the
equations of the one-velocity mixture dynamics. Of course, its multidimensional version
holds as well.

Applying the operation 〈·〉 to the mass balance equation for the mixture compo-
nents (19) and using the property 〈dα〉 = 0, we obtain the important balance equation for
the total mass

∂tρ + ∂x〈j`α〉 = 0, (41)

where j`α = ρα(u − w`α) is the regularized mass flux of the component α; moreover,
〈j`α〉 = ρ(u− w`) according to (29).

The above balance Equations (30), (41) and (31) entail the balance equations for the
kinetic and internal energies of the one-velocity mixture [22]

0.5∂t(ρu2) + 0.5∂x
(
ρ(u− w`)u2)+ (∂x p)u = (∂xΠ`)u +

(
ρ− `τ∂x(ρu)

)
f u, (42)

∂t(ρε) + ∂x〈j`αεα〉+ p∂xu = ∂x(−q` + 〈pαw`α〉) + Π`∂xu− ρŵ f + Q. (43)
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The specific entropy of the one-velocity mixture is still given by the formula s =
〈 ρα

ρ sα

〉
.

The entropy balance equation for the one-velocity mixture has the form [22]

∂t(ρs) + ∂x〈j`αsα〉 = ∂x

(1
θ
(κ∂xθ − `qτ)− 1

K
〈bαdα〉

)
+
κ
θ2 (∂xθ)2 +

ν

θ
(∂xu)2 +

1
Kd0θ

〈d2
α〉+

1
τθ
〈ραŵ2

α〉+ `τ
〈Rα

ρα

{
∂x(ραu)

}2
〉

+`
τ

θ2

〈
cVα ρα

{
(γα − 1)θ∂xu + u∂xθ − Qα

2cVαρα

}2〉
+

1
θ

〈
Qα

(
1− `

τ(γα − 1)Qα

4pα

)〉
. (44)

It is derived from the balance equations for the mass of the components (19) and the internal
energy of the mixture (43).

The sum of all terms on the right-hand side of Equation (44), except for the divergent
first one, is the entropy production. Among these terms, the sum

κ
θ2 (∂xθ)2 +

ν

θ
(∂xu)2 +

1
Kd0θ

〈d2
α〉+

〈Qα〉
θ

is the Navier–Stokes–Fourier entropy production, and all its four terms are non-negative.
The remaining terms with the factor τ are relaxation ones, and the three penultimate

terms on the right in Equation (44) contain quadratic terms with positive coefficients under
the sign 〈·〉 and therefore are non-negative. The last term on the right in Equation (44) is
again non-negative for ` = 0, as well as for ` = 1 and under the condition τ(γα − 1)Qα 6
4pα, α = 1, K, or the more general condition

τ
〈 (γα − 1)Q2

α

4pα

〉
6 Q,

and then the total entropy production is non-negative as well.
The indicated entropy balance equation and the property of entropy production non-

negativity remain valid for τ > 0 again, where one should pass to a different form for the
first relaxation term:

1
τθ
〈ραŵ2

α〉 =
τ

θ

〈 1
ρα

(ραu∂xu + ∂x pα − ρα f )2
〉

.

In addition, this property remains valid in the absence of diffusion fluxes (for d0 = 0): then,
in Equation (44), one should simply omit both terms with dα.

4. A Spatial Discretization of the 1D Regularized System of Equations for the
Dynamics of General Gas Mixtures

Define the uniform mesh ω̄h on [−X, X], with the nodes xi = −X + ih, 0 6 i 6 N,
and the step h = 2X

N . Let ωh = ω̄h\{−X, X} be its internal part. Define also an auxiliary
(conjugate) mesh ω∗h with the nodes xi+1/2 = (i + 1/2)h, 0 6 i 6 N − 1.

Let H(ω) be the space of functions defined on a mesh ω. For functions v ∈ H(ω̄h)
and y ∈ H(ω∗h), we introduce the averages, shifts of the argument and difference quotients

[v]i+1/2 = 0.5(vi + vi+1), v−,i+1/2 = vi, v+,i+1/2 = vi+1, δvi+1/2 =
vi+1 − vi

h
,

[y]∗i = 0.5(yi−1/2 + yi+1/2), δ∗yi =
yi+1/2 − yi−1/2

h
.

Here, vi = v(xi) and yi+1/2 = y(xi+1/2). Clearly, [·], δ: H(ω̄h) → H(ω∗h) and [·]∗, δ∗:
H(ω∗h)→ H(ωh).



Symmetry 2022, 14, 2171 11 of 28

Below, we need several mesh counterparts of the product rule for differentiation and
formulas with averages for v, u ∈ H(ω̄h) and y ∈ H(ω∗h) [28]

δ(uv) = δu · [v] + [u]δv, (45)

δ∗(y[v]) = δ∗y · v + [yδv]∗, (46)

δ∗([u][v]− 0.25h2δu · δv) = δ∗[u] · v + uδ∗[v], (47)

[y]∗v =
[
y[v]

]∗ − 0.25h2δ∗(yδv), (48)

[uv] = [u][v] + 0.25h2δu · δv. (49)

Hereafter, in order to reduce the amount of parentheses, we write, for example,
δu · [v] = (δu)[v] (i.e., the multiplication sign · terminates the action of the previous
operators on the left). All these formulas are, in fact, simple algebraic identities and can be
straightforwardly verified (although some of them are nontrivial). Recall that Formula (47)
follows from Formulas (46) and (48):

δ∗([u][v]) = δ∗[u] · v +
[
δv · [u]

]∗
= δ∗[u] · v + [δv]∗u + 0.25h2δ∗(δv · δu),

as well as from the equality [δv]∗ = δ∗[v].
Following the single-component case [28], for the system of equations of the general

gas mixture dynamics (1)–(7) in the absence of body forces (i.e., for fα = 0), we construct
the following semi-discrete (space-discrete) balance equations for the mass, momentum
and total energy of the components

∂tρα + δ∗ j`α = 0, (50)

∂t(ραuα) + δ∗(j`α[uα] + [pα]) = δ∗Π`α + Su,α, (51)

∂tEα + δ∗
{
([Eα]2 + [pα])([uα]− w`α)− 0.25h2δuα · δpα

}
= δ∗(−q`α + Π`α[uα]) + SE,α + [Qα]

∗ (52)

on ωh × [0, T], for α = 1, K. Herein, the pressure, specific internal and total energies of the
components have the standard form

pα = (γα − 1)ραεα = Rαραθα, εα = cVαθα, Eα = 0.5ραu2
α + ραεα.

The following discretizations are applied for the mass flux and regularizing velocities

j`α = [ρα]ln([uα]− w`α),

w`α = `
τ

[ρα]
[uα]δ(ραuα) + ŵα, ŵα =

τ

[ρα]
([ρα][uα]δuα + δpα),

along with the viscous stress and heat flux

Π`α = ναδuα + Πτ
`α, Πτ

`α = [uα][ρα]ŵα + `τ
{
[uα]δpα + γα[pα]1δuα − (γα − 1)Qα

}
, (53)

q`α = −καδθα + `qτ
α , −qτ

α = τ
{
[ρα][uα]

2
(

δεα −
[pα]1
[ρα]2

δρα

)
−Qα[uα]

}
. (54)

The main sought functions ρα > 0, uα and θα > 0 as well as the functions pα, εα and
Eα are defined in space on the main mesh ω̄h, whereas the functions j`α, w`α, ŵα, Π`α,
q`α, τ, να, κα and Qα are defined on the auxiliary mesh ω∗h . In addition, if, for example,
τ = T

(
{ρα, uα, θα}K

α=1
)
, then one can set

τ = T
(
{[ρα], [uα], [θα]}K

α=1
)

or τ =
[
T
(
{ρα, uα, θα}K

α=1
)]

on ω∗h .
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The above semi-discrete equations in the case ` = 1 represent the set of semi-discrete
equations from [28] that are written for each of the mixture components and contain the
additional exchange terms Su,α and SE,α.

Notice that the first Formula (8) is most often used to discretize w`α for ` = 1 [10–12],
but here, its mesh counterpart does not hold, since δ(ραu2

α) = [uα]δ(ραuα) + [ραuα]δuα due
to Formula (45), but [ραuα] 6≡ [ρα][uα].

Along with the standard averages of the functions ρα, uα and pα, this method involves
non-standard averages of ρα, pα, Eα and εα of the form [28]

[ρα]ln =
1

ln(ρα−; ρα+)
, [pα]1 = Rα[ρα][θα], (55)

[Eα]2 = 0.5[ρα]lnuα−uα+ + [ρα]ln[εα]
ln,

[εα]
ln = cVα ln

(1
θ α−

;
1
θ α+

)
= cVαθα−θα+ ln(θα−; θα+). (56)

Here, ln(a; b) is the divided difference for the logarithmic function

ln(a; b) =
ln b− ln a

b− a
for a 6= b, ln(a; a) =

1
a

, a > 0, b > 0. (57)

The non-standard averages, like the simplest ones, are two-point and symmetric (and
therefore, they have the approximation order O(h2) for twice continuously differentiable
functions of the continuous argument). Note that uα−uα+ in [Eα]2 is an average of the
geometric mean type for u2

α.
Recall that in order to avoid loss of accuracy at b/a ≈ 1, instead of Formula (57) itself,

some approximations are used in computations. For this purpose, it is convenient to apply
the integral representation of ln(a; b) and the corresponding numerical quadratures, in
particular, the trapezoidal rule, the midpoint rule or Simpson’s rule

ln(a; b) =
∫ 1

0

1
(1− r)a + br

dr ≈ 1
2a

+
1
2b

,
2

a + b
,

1
6a

+
4

3(a + b)
+

1
6b

.

The first and second of these rules lead to the approximate equalities [εα]ln ≈ [εα] and
[ρα]ln ≈ [ρα] which we apply in our numerical experiments in Section 6 below.

Note that using non-standard averages requires some caution. For example, clearly
[cρα]ln = c[ρα]ln and [cεα]ln = c[εα]ln for any c = const > 0. However, 〈[ρα]〉 = [ρ] but
〈[ρα]ln〉 6≡ [ρ]ln for ρ = 〈ρα〉.

If one uses only the standard averages, then, in the semi-discrete entropy balance
equation, there arise sign-indefinite mesh imbalances in the entropy production [28].

Let us first derive semi-discrete counterparts of Equations (10) and (11).

Lemma 2. The semi-discrete balance equations for the kinetic and internal energies of the mixture
components hold

0.5∂t(ραu2
α) + 0.5δ∗(j`αuα−uα+) + δ∗[pα] · uα = δ∗Π`α · uα + Su,αuα, (58)

∂t(ραεα) + δ∗(j`α[εα]
ln) = −δ∗q`α − pαδ∗([uα]− w`α)

+[Π`αδuα + w`αδpα + Qα]
∗ + SE,α − Su,αuα (59)

on ωh × [0, T], with α = 1, K.

Proof. Following [28], we multiply the semi-discrete momentum balance equation for
the mixture components (51) by uα and apply Formula (12). Using the semi-discrete
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mass balance equation for the components (50) and Formula (46) twice, we obtain the
following equalities

∂tρα · u2
α = −δ∗ j`α · u2

α = −δ∗(j`α[u2
α]) + [j`αδ(u2

α)]
∗, (60)

δ∗(j`α[uα]) · uα = δ∗(j`α[uα]
2)− [j`α[uα]δuα]

∗. (61)

Taking into account also the elementary formulas

[uα]
2 = 0.5[u2

α] + 0.5uα−uα+, 0.5δ(u2
α) = [uα]δuα, (62)

we derive the semi-discrete balance equation for the kinetic energy (58).
We subtract it from the semi-discrete balance equation for the total energy (52). By

virtue of Formulas (47) and (46) applied twice, we have, respectively,

δ∗
(
[uα][pα]− 0.25h2δuα · δpα

)
= δ∗[uα] · pα + δ∗[pα] · uα, (63)

δ∗(w`α[pα]) = δ∗w`α · pα + [w`αδpα]
∗, (64)

δ∗(Π`α[uα]) = δ∗Π`α · uα + [Π`αδuα]
∗. (65)

Consequently, the semi-discrete balance equation for the internal energy (59) holds
as well.

In this lemma, the choice of averages uα−uα+ in [Eα]2 and the additional term
−0.25h2δuα · δpα in the semi-discrete balance equation for the total energy (52) have already
played their role, but the specific forms of averages [ρα]ln, [pα]1 and [εα]ln have not yet been
important and could be arbitrary. They will play their part in the next step of the method
analysis.

The following result is a semi-discrete counterpart of the entropy balance equation for
the general gas mixture (14), and it serves as the main one in this section.

Theorem 1. For the semi-discrete method (50)–(56), the entropy balance equation for the mixture
holds

∂t(ρs) + δ∗
〈

j`α[sα]
〉

= δ∗
〈[ 1

θα

](
καδθα − `qτ

α) + Bαh
)〉

+
[
PNS

h + Pτ
h
]∗

+
〈 1

θα
(SE,α − Su,αuα)

〉
(66)

on ωh × [0, T] (see definitions (13) of the entropies), where

Bαh := Rα j`α

(
1− [ρα]

[ρα]ln

)
+ cVα j`α

(
1− [εα]

ln
[ 1

εα

])
− 0.25h2(Π`αδuα + w`αδpα + Qα

)
δ

1
θα

,

PNS
h :=

〈 1
θα−θα+

(
κα(δθα)

2 + να[θα](δuα)
2)〉 > 0,

Pτ
h :=

〈 1
θα−θα+

{ 1
τ
[ρα][θα]ŵ2

α + `τRα
[θα]2

[ρα]

(
δ(ραuα)

)2

+`τcVα[ρα]
(
[uα]δθα + (γα − 1)[θα]δuα −

Qα

2cVα[ρα]

)2
+ [θα]Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)}〉
.

The last two terms on the right in Equation (66) compound the entropy production. The first
three terms of Pτ

h are non-negative, and the last term is non-negative for ` = 0, as well as for ` = 1
under the condition τ(γα − 1)Qα 6 4[pα]1, α = 1, K. Moreover,

〈 1
θα
(SE,α − Su,αuα)

〉
> 0 due to

the last relation (9).
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Proof. We use the reasoning from [28]. According to the formulas ρs = 〈ραsα〉 and ρε =
〈cVαραθα〉, we first have

∂t(ρs) =
〈

∂tρα · sα + ρα

(
− Rα

ρα
∂tρα +

cVα

θα
∂tθα

)〉
=
〈

∂tρα · sα − (Rα + cVα)∂tρα + ∂t(ραεα) ·
1
θα

〉
.

Due to the semi-discrete mass balance equation for the component (50) and the expression

δ∗(j`α[sα]) = δ∗ j`α · sα + [j`αδsα]
∗, (67)

see Formula (46), further we obtain

∂t(ρs) + δ∗〈j`α[sα]〉 =
〈
[j`αδsα]

∗ + (Rα + cVα)δ
∗ j`α + ∂t(ραεα) ·

1
θα

〉
.

By virtue of the formula[
j`α[εα]

lnδ
1
θ α

]∗
+ δ∗(j`α[εα]

ln) · 1
θα
− δ∗

(
j`α[εα]

ln
[ 1

θα

])
= 0, (68)

see Formula (46) again, we obtain

∂t(ρs) + δ∗〈j`α[sα]〉 =
〈[

j`α

(
δsα + [εα]

lnδ
1
θα

)]∗
+
{

∂t(ραεα) + δ∗(j`α[εα]
ln)
} 1

θα

〉
+δ∗

〈
j`α

(
Rα + cVα − [εα]

ln
[ 1

θα

])〉
. (69)

By definition (13) of sα, the following equalities hold

δsα = −Rαδ ln ρα + cVαδ ln θα = −Rα ln(ρα−; ρα+)δρα + cVα ln(θα−; θα+)δθα. (70)

The elementary formulas

δ
1
θα

= − δθα

θα−θα+
,
[ 1

θα

]
=

[θα]

θα−θα+
(71)

are also valid. Using the first of them in the first term on the right in Equality (69), we
transform the expression under the sign [·]∗:

j`α

(
δsα + [εα]

lnδ
1
θα

)
= −[ρα]ln([uα]− w`α)Rα ln(ρα−; ρα+)δρα

+j`α

(
cVα ln(θα−; θα+)− [εα]

ln 1
θα−θα+

)
δθα = −Rα([uα]− w`α)δρα. (72)

The latter equality is valid according to the definitions of the averages [ρα]ln and [εα]ln,
and it is this equality that explains their above choice (55) and (56).

We transform the second term on the right in equality (69) under the sign 〈·〉. By virtue
of the semi-discrete balance equation for the mixture internal energy (59) and the formulas

−δ∗q`α ·
1
θα

=
[
q`αδ

1
θα

]∗
− δ∗

(
q`α

[ 1
θα

])
, (73)

−pαδ∗([uα]− w`α) ·
1
θα

= [Rα([uα]− w`α)δρα]
∗ − δ∗(Rα([uα]− w`α)[ρα]), (74)
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see Formula (46), and also by virtue of Formula (48) for the third term on the right in
Equation (59), we derive

{
∂t(ραεα) + δ∗(jlα[εα]

ln)
} 1

θα

= −δ∗
(

q`α

[ 1
θα

]
+ Rα([uα]− w`α)[ρα] + 0.25h2(Π`αδuα + w`αδpα + Qα)δ

1
θα

)
+
[
q`αδ

1
θα

+ Rα([uα]− w`α)δρα + (Παδuα + w`αδpα + Qα)
[ 1

θα

]]∗
+(SE,α − Su,αuα)

1
θα

. (75)

We apply the operation 〈·〉 to the last equality and use Formula (72) (as a result, the first
term on the right in equality (69) under the sign 〈·〉 cancels out with

[
Rα([uα]− w`α)δρα

]∗).
We also apply the Formulas (71) and

−Rα([uα]− w`α)[ρα] + j`α

(
Rα + cVα − [εα]

ln
[ 1

θα

])
= Rα j`α

(
1− [ρα]

[ρα]ln

)
+ cVα j`α

(
1− [εα]

ln
[ 1

εα

])
. (76)

Then, equality (69) can be rewritten as the semi-discrete entropy balance equation for
the mixture

∂t(ρs) + δ∗〈j`α
[sα]〉 = δ∗

〈
− q`α

[ 1
θα

]
+ Bhα

〉
+
〈[ 1

θα−θα+

(
κα(δθα)

2 + να[θα](δuα)
2 + A`α

)]∗〉
+
〈 1

θα
(SE,α − Su,αuα)

〉
, (77)

where Bhα has been introduced above in the statement of the theorem and

A`α := −`qτ
αδθα +

(
Πτ

`αδuα + w`αδpα + Qα

)
[θα]. (78)

The term A`α can be represented as the sum of three quadratic terms with positive
coefficients and a term proportional to Qα:

A`α =
1
τ
[ρα][θα]ŵ2

α + `τRα
[θα]2

[ρα]

(
δ(ραuα)

)2

+`τcVα[ρα]
(
[uα]δθα + (γα − 1)[θα]δuα −

Qα

2cVα[ρα]

)2
+ [θα]Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)
(79)

according to [28] (where the case ` = 1 was considered, while the case ` = 0 is radically
simpler). For the sake of completeness and the reader convenience, the proof is included
below in Appendix A. Therefore, the formula holds〈[ 1

θα−θα+
A`α

]∗〉
=
[
Pτ

h
]∗

with Pτ
h introduced above in the statement of the theorem, which completes the proof.
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Remark 1. Theorem 1 can also be derived from the semi-discrete entropy balance equation for the
individual mixture components

∂t(ραsα) + δ∗(j`α
[sα]) = δ∗

(
− q`α

[ 1
θα

]
+ Bhα

)
+
[ 1

θα−θα+

(
κα(δθα)

2 + να[θα](δuα)
2 + A`α

)]∗
+

1
θα

(SE,α − Su,αuα),

with α = 1, K, see [28] in the case Su,α = SE,α = 0. It is proved with the help of transformations
quite similar to those performed above, using sα instead of s. Applying the operation 〈·〉 to it, we
obtain the semi-discrete entropy balance equation for the mixture (77).

Note that the term δ∗〈Bαh〉 in Equation (66) is a divergent difference imbalance. Of
course, the appearance of the first two summands in Bαh is associated with the use of non-
standard averages [ρα]ln and [εα]ln instead of [ρα] and

[ 1
εα

]−1 (the second of which, however,
also does not coincide with the simplest [εα]). Moreover, Bαh = O(h2) on continuous
functions ρα > 0, uα and θα > 0 having bounded second derivatives ∂2

xρα, ∂2
xu and ∂2

xθα

and for bounded τ, να and Qα, α = 1, K.
Similarly to the differential case, the derived semi-discrete entropy balance equation

remains valid for τ > 0, where one should pass to a different form for the first relaxation
term in Pτ

h :
1
τ
[ρα][θα]ŵ2

α = τ
[θα]

[ρα]
([ρα][uα]δuα + δpα)

2.

Applying the operation 〈·〉 to the semi-discrete balance equations for the momentum
and total energy of the components (51)–(52), as their corollaries, we obtain the semi-
discrete balance equations for the momentum and total energy of the general mixture

∂t〈ραuα〉+ δ∗
(
〈j`α[uα]〉+ [p]

)
= δ∗Π`, (80)

∂tE + δ∗〈([Eα]2 + [pα])([uα]− w`α)− 0.25h2δuαδpα〉 = δ∗(−q` + 〈Π`α[uα]〉) + [Q]∗ (81)

on ωh × [0, T], compare with the corresponding differential Equations (16) and (17). They
involve the total viscous stress, pressure, heat flux and intensity of heat sources

Π` = 〈ναδuα〉+ Πτ
` , Πτ

` = 〈[uα][ρα]ŵα〉+ `τ
{〈

([uα]δpα + γα[pα]1)δuα − γαQα

〉
+ Q

}
,

p = 〈pα〉, q` = 〈q`α〉, Q = 〈Qα〉.

These equations are exploited in the next section.

5. A Spatial Discretization of the 1D Regularized System of Equations for the
Dynamics of One-Velocity Gas Mixtures in the Presence of Diffusion Fluxes

In this section, we perform a spatial discretization of the system of equations for the
one-velocity mixture dynamics (19)–(28) and (32)–(34). It will not be accomplished directly,
but rather will be based on the aggregation of the above semi-discrete equations of the
general mixture dynamics. Namely this non-standard approach will ultimately ensure
the fulfillment of the correct semi-discrete entropy balance equation for the one-velocity
mixture.

First, for simplicity, let the body force be absent (i.e., f = 0). Relying on the semi-
discrete balance equations for the mass of the components (50) and the momentum and
total energy of the general mixture (80)–(81) and setting there uα = u and θα = θ for
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α = 1, K, we construct the following semi-discrete balance equations for the mass of the
components and the momentum and total energy of the one-velocity mixture

∂tρα + δ∗(j`α + dα) = 0, α = 1, K, (82)

∂t(ρu) + δ∗(j`[u] + [p]) = δ∗Π`, (83)

∂tE + δ∗
{〈

([Eα]2 + [pα])([u]− w`α)
〉
− 0.25h2δu · δp

}
= δ∗(−q` + Π`[u]) + [Q]∗ (84)

on ωh × [0, T], where, additionally, there are discrete diffusion fluxes dα between the
component α and the remaining components of the mixture. The main sought functions
ρα > 0, α = 1, K, u and θ > 0 together with the functions pα, εα and Eα are defined in space
on the main mesh ω̄h. In the equations, the pressure, specific internal and total energies of
the components have the familiar form

pα = (γα − 1)ραεα = Rαραθ, εα = cVαθ, Eα = 0.5ραu2 + ραεα, (85)

together with the total density and corresponding quantities for the one-velocity mixture

ρ = 〈ρα〉, p = 〈pα〉 = Rρθ, ε =
〈ρα

ρ
εα

〉
= cVθ, E = 〈Eα〉 = 0.5ρu2 + ρε, (86)

see also the functions R and cV in (24).
There arise the following discretizations of the mass flux and regularizing velocities

j`α = [ρα]ln([u]− w`α), j` = 〈j`α〉, (87)

w`α = `
τ

[ρα]
[u]δ(ραu) + ŵα, ŵα =

τ

[ρα]
([ρα][u]δu + δpα), (88)

as well as of the viscous stress and the heat flux

Π` = νδu + Πτ
` , Πτ

` = [u]〈[ρα]ŵα〉+ `τ
{
[u]δp + 〈γα[pα]1〉δu− 〈γαQα〉+ Q

}
, (89)

q` = −κδθ + qd + `qτ , −qτ = τ
{
[u]2

(
〈cVα[ρα]〉δθ − [θ]δ〈Rαρα〉

)
−Q[u]

}
; (90)

recall that here, ν = 〈να〉, κ = 〈κα〉 and Q = 〈Qα〉. Clearly, the following formulas hold

〈[ρα]ŵα〉 = τ([ρ][u]δu + δp), 〈cVα[ρα]〉 = [cVρ], 〈Rαρα〉 = Rρ.

The new term qd in the heat flux appears due to taking into account the diffusion
fluxes between the mixture components.

The functions j`α, w`α, ŵα, Π`, q`, τ, ν, κ and Qα are defined in space on the auxiliary
mesh ω∗h . Moreover, we have

[pα]1 = Rα[ρα][θ], 〈γα[pα]1〉 = 〈γαRα[ρα]〉[θ],

[Eα]2 = 0.5[ρα]lnu−u+ + [ρα]ln[εα]
ln, [εα]

ln = cVα
θ−θ+
[θ]ln

.

We emphasize that, at first glance and quite standardly, the direct discretization of the
simplified balance equations for the momentum and total energy (30) and (31) seems to be
the most natural. However, it leads to a different method, since even [ρ]ln[u] 6≡ 〈[ρα]ln[u]〉,
and, for such a method, the construction of an entropy balance equation with a non-negative
entropy production is problematic.

In addition, we set

−dα = d0
(
δ(KGα − G) + bαδθ

)
, α = 1, K, qd =

〈(
[Gα] + K−1bα[θ]

)
dα

〉
, (91)
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where the Gibbs potentials of the components Gα are given by Formulas (34) and are
defined in space on ω̄h and still G = 〈Gα〉, whereas the functions dα, d0, bα and qd are
defined in space on ω∗h . Moreover, if bα = Bα(ρ1, . . . , ρK, θ), then to preserve the property
〈bα〉 = 0 on ω∗h , one should put, for example, bα = [Bα(ρ1, . . . , ρK, θ)] (but not, say, bα =
Bα([ρ1], . . . , [ρK], [θ])) on ω∗h .

Now, we present the semi-discrete counterpart of Proposition 1.

Proposition 2. Let the functions ρ > 0, u and θ > 0 be a solution to the following semi-discrete
method for the regularized system of equations for a single-component gas dynamics [28]

∂tρ + δ∗ j` = 0, (92)

∂t(ρu) + δ∗(j`[u] + [p]) = δ∗Π`, (93)

∂tE + δ∗
{
([E]2 + [p])([u]− w`)− 0.25h2δu · δp

}
= δ∗(−q` + Π`[u]) + [Q]∗ (94)

on ωh × [0, T], where p = (γ− 1)ρε = Rρθ, ε = cVθ and E = 0.5ρu2 + ρε with constant R > 0
and cV > 0 together with

j` = [ρ]ln([u]− w`), (95)

w` = `
τ

[ρ]
[u]δ(ρu) + ŵ, ŵ =

τ

[ρ]
([ρ][u]δu + δp), (96)

Π` = νδu + Πτ
` , Πτ

` = [u][ρ]ŵ + `τ
{
[u]δp + γ[p]1δu− (γ− 1)Q}, (97)

q` = −κδθ + `
{
[u]2

(
cV [ρ]δθ − R[θ]δρ

)
−Q[u]

}
, (98)

with, for example, τ = [T (ρ, ε, u)] > 0, ν = [N (ρ, ε, u)] > 0 and κ = [K(ρ, ε, u)] > 0 in space
on ω∗h .

Then, for any constant 0 < Cα < 1, α = 1, K, such that 〈Cα〉 = 1, the functions ρα = Cαρ,
α = 1, K, u and θ > 0 are a solution to the semi-discrete method for the regularized system
of equations for the one-velocity mixture dynamics (82)–(90) with dα = 0, γα = γ, Rα = R
and cVα = cV , α = 1, K, as well as τ = [T (ρ, ε, u)] > 0, ν = [N (ρ, ε, u)] > 0 and κ =
[K(ρ, ε, u)] > 0 in space on ω∗h with ρ and ε given by Formulas (86).

Proof. Under the hypotheses of the proposition, Formulas (85) and (86) are valid. We
also have ŵα = ŵ and w`α = w` in expressions (88), see definitions (96); furthermore,
definitions (97) and (98) coincide with the corresponding formulas for the mixture (89)
and (90). Therefore, the semi-discrete balance equations for the momentum and total
energy (93) and (94) coincide with the corresponding balance equations for the mixture (83)
and (84). Moreover, the multiplication of the semi-discrete mass balance Equation (92) by
Cα leads to the corresponding Equation (82).

This proposition is useful for checking various properties of solutions to the con-
structed semi-discrete equations of the one-velocity mixture dynamics and also for testing
the codes that implement them.

Let us derive semi-discrete counterparts of Equations (41)–(43).

Lemma 3. The following semi-discrete balance equations for the total mass and kinetic and internal
energies of the one-velocity mixture hold

∂tρ + δ∗ jl = 0, (99)

0.5∂t(ρu2) + 0.5δ∗(j`u−u+) + δ∗[p] · u = δ∗Π` · u, (100)

∂t(ρε) + δ∗〈j`α[εα]
ln〉 = −δ∗q` − 〈pαδ∗([u]− w`α)〉+ [Π`δu + 〈w`αδpα〉+ Q]∗ (101)

on ωh × [0, T].
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Proof. Applying operation 〈·〉 to the semi-discrete mass balance equation for the compo-
nents (82) leads to the semi-discrete total mass balance Equation (99), due to the property
〈dα〉 = 0.

Deriving Equations (100) and (101) is similar to the proof of Lemma 2. We multi-
ply the semi-discrete momentum balance Equation (83) by u, and we use Formulas (12)
and (60)–(62), where we omit the index α of ρα, uα and j`α, as well as the already derived
Equation (99). As a result, we derive the semi-discrete balance equation for the kinetic
energy of the mixture (100).

We subtract it from the semi-discrete balance equation for the total energy (84) and
obtain

∂t(ρε) + δ∗
{
〈j`α[εα]

ln〉+ [p][u]− 〈[pα]w`α

〉
− 0.25h2δu · δp

}
− δ∗[p] · u

= δ∗(−q` + Π`[u])− δ∗Π` · u + [Q]∗.

We apply Formulas (63) and (65), where we omit the index α of uα, pα and Π`α, as well
as Formula (64), and prove the semi-discrete balance equation for the internal energy of the
mixture (101).

The next result is a semi-discrete counterpart of the balance equation for the entropy
of the one-velocity gas mixture (44), and it serves as the main one in this section.

Theorem 2. Let d0 > 0. For the semi-discrete method (82)–(91), the balance equation for the
entropy of the one-velocity mixture hold

∂t(ρs) + δ∗
〈

j`α[sα]
〉
= δ∗

(
(κδθ − `qτ)

[1
θ

]
− 〈bαdα〉

K
[θ]2

θ−θ+
+ B(d)

h

)
+
[
PNS

h + Pτ
h
]∗ (102)

on ωh × [0, T], where

B(d)
h :=

〈
Rα j`α

(
1− [ρα]

[ρα]ln

)
+ cVα j`α

(
1− [εα]

ln
[ 1

εα

])〉
−0.25h2(Π`δu− 〈dαδGα〉+ 〈w`αδpα〉+ Q

)
δ

1
θ

,

PNS
h :=

1
θ−θ+

{
κ(δθ)2 + ν[θ](δu)2 +

[θ]

Kd0
〈d2

α〉
}
> 0,

Pτ
h :=

1
θ−θ+

{ [θ]
τ

〈
[ρα]ŵ2

α

〉
+ `τ[θ]2

〈 Rα

[ρα]

(
δ(ραu)

)2
〉

+`τ
〈

cVα[ρα]
(
[u]δθ + (γα − 1)[θ]δu− Qα

2cVα[ρα]

)2〉
+ [θ]

〈
Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)〉}
.

The term
[
PNS

h + Pτ
h
]∗ in Equation (102) is the semi-discrete entropy production. The first

three terms of Pτ
h are non-negative, and the last term is non-negative for ` = 0, as well as for ` = 1

under the condition

τ
〈 (γα − 1)Q2

α

4[pα]1

〉
6 Q.

This condition is certainly true provided that τ(γα − 1)Qα 6 4[pα]1, α = 1, K.

Proof. The derivation of Equation (102) follows the same plan as in Theorem 1 with an
additional transformation of the terms containing dα and qd.

Due to formulas ρs = 〈ραsα〉 and ρε = 〈cVαρα〉θ, we have

∂t(ρs) =
〈

∂tρα · sα + ρα

(
− Rα

ρα
∂tρα +

cVα

θ
∂tθ
)〉

= 〈∂tρα · sα− (Rα + cVα)∂tρα〉+ ∂t(ρε) · 1
θ

.
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By virtue of the semi-discrete mass balance equation for the components (82) and
Formula (67), we obtain

∂t(ρs)+ δ∗〈j`α[sα]〉 = 〈[j`αδsα]
∗〉+ 〈(Rα + cVα)δ

∗ j`α〉+ 〈(−sα +Rα + cVα)δ
∗dα〉+ ∂t(ρε) · 1

θ
.

By virtue of Formulas (68), where we omit the index α of θα, together with −sα + Rα +
cVα = Gα/θ, see (34), we can write

∂t(ρs) + δ∗〈j`α[sα]〉 =
〈[

j`α

(
δsα + [εα]

lnδ
1
θ

)]∗〉
+
{

∂t(ρε) + δ∗〈j`α[εα]
ln〉
}1

θ

+δ∗
〈

j`α

(
Rα + cVα − [εα]

ln
[1

θ

])〉
+
〈Gα

θ
δ∗dα

〉
. (103)

With the help of Formulas (70) and (71), where we omit the index α of θα, in the first
term on the right in equality (103), the expression under the sign [·]∗ can be transformed
similarly to equalities (72) as

j`α

(
δsα + [εα]

lnδ
1
θ

)
= −Rα([u]− w`α)δρα. (104)

Let us transform the second term on the right in equality (103). Due to the semi-discrete
balance equation for the internal energy of the mixture (101), as well as Formulas (73)
and (74), where we omit the index α of q`α, θα and uα, together with Formula (48), we obtain

{
∂t(ρε) + δ∗〈jlα[εα]

ln〉
}1

θ

= −δ∗
{

q`
[1

θ

]
+ 〈Rα([u]− w`α)[ρα]〉+ 0.25h2(Π`δu + 〈w`αδpα〉+ Q)δ

1
θ

}
+〈[Rα([u]− w`α)δρα]

∗〉+
[
q`δ

1
θ
+ (Π`δu + 〈w`αδpα〉+ Q)

[1
θ

]]∗
by analogy with equality (75).

By virtue of Formula (104), the first term on the right in equality (103) cancels out the
second term on the right in the last formula. Now, due to the definitions of q` and Π`, see
expressions (90) and (89), and using Formulas (76) and (71), where we omit the index α
of uα and θα, equality (103) can be rewritten as the semi-discrete balance equation for the
mixture entropy

∂t(ρs) + δ∗〈j`α[sα]〉 = δ∗
([1

θ

]
(κδθ − `qτ) + Bh

)
+
[ 1

θ−θ+

{
κ(δθ)2 + ν[θ](δu)2 + A`

}]∗
−δ∗

(
qd
[1

θ

])
+
[
qdδ

1
θ

]∗
+
〈Gα

θ
δ∗dα

〉
, (105)

where

Bh :=
〈

Rα j`α

(
1− [ρα]

[ρα]ln

)
+ cVα j`α

(
1− [εα]

ln
[ 1

εα

])〉
− 0.25h2(Π`δu + 〈w`αδpα〉+ Q)δ

1
θ

,

A` := −`qτδθ +
(
Πτ

` δu + 〈w`αδpα〉+ Q
)
[θ] = 〈A`α〉,

A`α := −`qτ
αδθ +

(
Πτ

`αδu + w`αδpα + Qα

)
[θ],

with

qτ
α = τ

{
[u]2

(
cVα[ρα]δθ − Rα[θ]δρα

)
−Qα[u]

}
,

Πτ
`α = [u][ρα]ŵα + `τ

{
[u]δpα + γα[pα]1δu− (γα − 1)Qα

}
.
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Let us transform the terms with qd in the balance Equation (105) with the help of
Formula (46):

−δ∗
(

qd
[1

θ

])
+
[
qdδ

1
θ

]∗
+
〈Gα

θ
δ∗dα

〉
= δ∗

(〈
dα

[Gα

θ

]〉
− qd

[1
θ

])
+
[
qdδ

1
θ
−
〈

dαδ
Gα

θ

〉]∗
. (106)

For the term on the right under the sign of δ∗, with the help of Formula (49), the
definition qd = 〈([Gα] + K−1bα[θ])dα〉 and the second Formula (71) with θ in the role of θα,
we have〈

dα

[Gα

θ

]〉
− qd

[1
θ

]
=
〈

dα

(
[Gα]

[1
θ

]
+ 0.25h2δGα · δ

1
θ

)〉
− 〈([Gα] + K−1bα[θ])dα〉

[1
θ

]
= 0.25h2〈dαδGα〉δ

1
θ
− 〈bαdα〉[θ]2

Kθ−θ+
.

For the term on the right in (106) under the sign of [·]∗, with the help of formula (45),
the definition of qd and formulas (71) with θ in the role of θα, as well as the definition of dα

(see expression (91)) and the property 〈dα〉 = 0, we also obtain

qdδ
1
θ
−
〈

dαδ
Gα

θ

〉
=
(
qd − 〈dα[Gα]〉

)
δ

1
θ
− 〈dαδGα〉

[1
θ

]
= − [θ]

Kθ−θ+

〈
dα

(
bαδθ + δ(KGα − G) + δG

)〉
=

[θ]

Kθ−θ+

〈d2
α〉

d0
.

Now, the semi-discrete balance equation for the mixture entropy (105) takes the form

∂t(ρs) + δ∗
〈

j`α[sα]
〉
= δ∗

(
(κδθ − `qτ)

[1
θ

]
− 〈bαdα〉

K
[θ]2

θ−θ+
+ Bh + 0.25h2〈dαδGα〉δ

1
θ

)
+
[ 1

θ−θ+

{
κ(δθ)2 + ν[θ](δu)2 +

[θ]

Kd0
〈d2

α〉+ 〈A`α〉
}]∗

.

By virtue of Formula (79) with uα = u and θα = θ for α = 1, K, the term A`α can be
represented as the following sum

A`α =
[θ]

τ
[ρα]ŵ2

α + `τ[θ]2
Rα

[ρα]

(
δ(ραu)

)2

+`τcVα[ρα]
(
[u]δθ + (γα − 1)[θ]δu− Qα

2cVα[ρα]

)2
+ [θ]Qα

(
1− `

τ(γα − 1)Qα

4[pα]1

)
,

that after applying the operation 〈·〉 allows us to complete the proof.

As in the differential case, the indicated property of the entropy production non-
negativity remains valid for τ > 0, where one should pass to a different form for the first
relaxation term in Pτ

h :

[θ]

τ

〈
[ρα]ŵ2

α

〉
= τ[θ]

〈 1
[ρα]

([ρα][u]δu + δpα)
2
〉

.

In addition, this property is also valid in the absence of diffusion fluxes (for d0 = 0),
when in the balance Equation (102), one should simply omit all three terms with dα,
including such terms in B(d)

h and PNS
h .
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To complete the section, following [28], we generalize the constructed semi-discrete
method and the obtained results to the case of any f . Let us generalize the right-hand sides
of the semi-discrete momentum and total energy balance Equations (83) and (84):

∂t(ρu) + δ∗(j`[u] + [p]) = δΠ` + [ρ∗` f ]∗,

∂tE + δ∗
{〈

([Eα]2 + [pα])([u]− w`α)
〉
− 0.25h2δu · δp

}
= δ∗(−q` + Π`[u]) + [Q]∗ +

〈[
[ρα]([u]− w`α) f

]∗〉
+ 0.25h2

[
ρ∗`δu · δ 1

θ
· f
]∗

θ, (107)

where the functions ρ∗` := [ρ] − `τδ(ρu) and f are defined in space on ω∗h . We also
generalize expression (88) for ŵα as follows

ŵα =
τ

[ρα]
([ρα][u]δu + δpα − [ρα] f ). (108)

On the right-hand side of the semi-discrete balance equation for the internal energy of
the mixture (101), the above expressions with f generate the following additional term

Ψ =
〈[
[ρα]([u]− w`α) f

]∗〉− [ρ∗` f ]∗u + 0.25h2
[
ρ∗`δu · δ 1

θ
· f
]∗

θ. (109)

When deriving the semi-discrete balance equation for the mixture entropy (102), one should
multiply this term by 1

θ and apply the formulas

[
[ρα]([u]− w`α) f

]∗ 1
θ
=
[
[ρα]([u]− w`α) f

[1
θ

]]∗
− 0.25h2δ∗

(
[ρα]([u]− w`α) f δ

1
θ

)
,

−[ρ∗` f ]∗
u
θ
= −

[
ρ∗`[u] f

[1
θ

]]∗
−
[
ρ∗`
([u

θ

]
− [u]

[1
θ

])
f
]∗

+ 0.25h2δ∗
(

ρ∗` f δ
u
θ

)
,

see Formula (48). Further application of Formula (49) makes it possible to cancel out the
last term of Ψ

θ , see expression (109), and the second term on the right in the last formula
(this is why the non-standard last term on the right in Equation (107) was added). This
leads to the equalities

Ψ
θ
=
[
{〈[ρα]([u]− w`α)〉 − ρ∗`[u]} f

[1
θ

]]∗
+ δ∗Ch = −

[
〈[ρα]ŵα〉 f

[1
θ

]]∗
+ δ∗Ch

with

Ch = −0.25h2
(
〈[ρα]([u]− w`α)〉δ

1
θ
− ρ∗`δ

u
θ

)
f = 0.25h2

(
〈[ρα]ŵα〉δ

1
θ
+ ρ∗`δu ·

[1
θ

])
f ,

where two formulas

〈[ρα]([u]− w`α)〉 − ρ∗`[u] = −〈[ρα]ŵα〉, δ
u
θ
= [u]δ

1
θ
+ δu ·

[1
θ

]
have additionally been used. As a result, the additional term −[ρα]ŵα f appears in A`α, and
the summand Ch should be added to B(d)

h . With such f -dependent extensions (including
the generalized Formula (108) for ŵα), Theorem 2 remains valid.

Notice that Ch = O(h2) (the same applies to the last term in Equation (107)) on
continuous functions ρ, u and θ > 0 having bounded derivatives ∂xρα, ∂xu and ∂xθ, and
for bounded τ and f .
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6. Numerical Experiments

We consider the binary one-velocity mixtures and three test examples well known
in the literature, using the following piecewise constant initial data (ρ1, ρ2, p, u, γ)|t=0 =
(ρ0

1, ρ0
2, p0, u0, γ0), with a discontinuity between two gases:

(ρ0
1, ρ0

2, p0, u0, γ0)(x) =

{
(ρ1l , ρ2l , pl , ul , γl), x < 0

(ρ1r, ρ2r, pr, ur, γr), x > 0
;

moreover, we have ρ1r = ρ2l = 0 (although, instead of that, in computations, we set them
very small, namely equal 10−8). Their parameters to the left and right of the discontinuity
at x = 0 and the final time of computations t f in are given in Table 1. Note that, in Examples
1–3, the initial pressure drop increases and, respectively, equals pl

pr
= 10, 20, 2500, which

amplifies computational complexity. The initial temperature θ0 is calculated according
to the above given formulas p0 = Rρ0θ0 = ((γl − 1)cVlρ1l + (γr − 1)cVrρ2r)θ

0, with the
simplest choice of cVl = cVr = 1.

Table 1. The parameters of the initial data to the left and right of the discontinuity between two gases
and the final time of computations.

Example ρ p u γ t f in

(1) left 1 1 0 1.4 0.2

(1) right 0.125 0.1 0 1.6

(2) left 1 2 0 2 0.2

(2) right 0.125 0.1 0 1.4

(3) left 1 500 0 1.4 0.011

(3) right 1 0.2 0 1.6

We also set X = 0.5 in all the examples, and the boundary values of the sought
functions at x = ±X in time are set constant and the same as their values given at t = 0.

We define a non-uniform mesh in time 0 = t0 < t1 < . . . < tm = t f in, with the steps
htm = tm − tm−1. We take the relaxation parameter and the artificial viscosity and heat
conductivity coefficients in the form

τm
i =

ah
cm

si
, µ = τp = τ(p1 + p2), κ = τ(aPr,lγlcVl p1 + aPr,rγrcVr p2)

standard for the single-component case [11,12]. Here, 0 < a < 1 is a parameter; recall also
that h = 2X

N is the step of the spatial mesh, cs :=
√
(γ− 1)γε is the speed of sound in the

mixture and, for example, cm
si = c(xi, tm). In addition, aPr,l and aPr,r are the inverse Prandtl

numbers (which can be considered as adjusting parameters as well); we take them equal 1
except for the last computation.

We apply the discretization in space constructed in the previous Section 5 combined
with the simplest explicit Euler method for the discretization in time. We use the automatic
non-uniform mesh in time, with the steps htm = tm − tm−1 such that

htm =
βh

max06i6N(cm−1
si + |um−1

i |)
, 1 6 m 6 m− 1, htm = t f in − tm−1 6

βh
max06i6N

(
cm−1

si + |um−1
i |

) ,

where β is a parameter (the Courant-type number). Note that if there appear values of
ρ1 or ρ2 less than 10−10 at the upper time level, we replace them by 10−10. We adjust the
parameters a and β in each example. Proposition 2 (more precisely, its natural fully discrete
counterpart) was used to test the code initially.
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Example 1 (moderate two-gas shock-tube problem) from ([34], Test 5.3), see also ([35],
Test 3.3). The final solution at t = t f in has jumps in the values of ρ1, ρ2, ρ and θ but not p
and u at the contact discontinuity between the two gases, as well as a rarefaction wave in
gas 1 to the left and a shock wave (the strong discontinuity, with jumps in the values of p
and u as well) in gas 2 to the right of the contact discontinuity. The functions ρ1, ρ and p
are non-increasing, whereas ρ2, u and θ are non-monotone, with the maximal values of ρ2
and u in front of the shock; also, ρ2 is piecewise constant. The final maximal Mach number

is Mmax := max06i6N
|um

i |
cm

si
≈ 0.91, so the flow is subsonic.

In the QGD case, i.e., for ` = 1, the results for a = 0.25, β = 0.4 and N = 1601 are
shown in Figure 1 containing the graphs of ρ1, ρ2, ρ, p, u and θ. For much smaller N = 401,
they are similar; however, as usual, the graph slopes near the points of strong and especially
contact discontinuities are smaller, whereas the slopes for N = 801 are already much closer
to those for N = 1601. The results correspond well to those given in [34,35].

Moreover, in the simpler QHD case, i.e., for ` = 0, the results for a = 0.6 and the
same β and N are very close, only with a very small ledge in the graph of u at the contact
discontinuity and the graph of ρ2 just to the right of it, see the same figure. Hereafter, more
minor differences become visible after magnifying our figures several times.

Figure 1. Example 1. The QGD (a = 0.25, red) and QHD (a = 0.6, blue) results for β = 0.4, N = 1601
and t = 0.2. Hereafter, the blue graphs are almost entirely situated behind the red ones.

Example 2 (a modified two-gas Sod problem) from ([36], Test 3.2). In this example, γl > γr
in contrast to Example 1, and also the difference |γl − γr| is larger. The final solution is in
general similar to Example 1, but the maximal value of θ is now in front of the shock, not at
the left boundary. The final maximal Mach number is Mmax ≈ 0.94, so the flow is subsonic
once again.

In the QGD case, the results for a = 0.25, β = 0.3 and N = 2001 are presented in
Figure 2 (for N = 501, they are similar, but the graph slopes near the points of contact and
strong discontinuities are smaller once again). They correspond well to those from [36]
except for a very small hollow at the point of contact discontinuity.

In the QHD case, the results for a = 0.6, β = 0.3 and N = 2001 are very close once
again; a unique visible difference is slightly worse behavior of the graph of ρ2 just to the
right of the contact discontinuity in the same figure.

Example 3 (stiff two-gas shock-tube problem) from ([34], Test 5.4). In the original paper,
the initial left and right pressures were confused, and t f in was not specified, so we adjusted
it according to the given graphs; note that it is much less than in the previous examples.
Recall that, in this example, the initial pressure drop equals 2500 and is much larger than
previously. Concerning the final values, now, the support of the maximal value of ρ2 is more
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narrow, the maximal value of ρ is in front of the shock and θ becomes non-increasing, with
large jumps in their values. In addition, Mmax ≈ 1.44, so the flow is partially supersonic
now (recall that u = 0 and thus M = 0 near the boundaries).

In the QGD case, the results for a = 0.25, β = 0.1 and N = 4001 are given in Figure 3,
and they are in accordance with those in [34]. For smaller N = 2001, the quality of graphs
of ρ2 and ρ near the contact discontinuity becomes worse.

In contrast, in the QHD case, now, the graphs of ρ2, u and p are satisfactory even for
N = 1001, but the quality of the graphs of ρ and especially of ρ1 and θ is much worse
near the contact discontinuity (even for larger a = 0.6), and we omit them. However, the
situation can be radically improved by taking larger aPr,l = aPr,r = 10 and applying another
known formula for τ:

τm
i =

ah
cm

si + |um
i |

,

that is also often used for transonic or supersonic flows. The results become very close and
are very slightly worse only for ρ1 and u near the contact discontinuity; see the same figure.

Figure 2. Example 2. The QGD (a = 0.25, red) and QHD (a = 0.6, blue) results for β = 0.3, N = 2001
and t = 0.2.

Figure 3. Example 3. The QGD (a = 0.25, red) and QHD (a = 0.6, blue) results for β = 0.1, N = 4001
and t = 0.011.
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Appendix A

Following [28], we derive representation (79) for the quantity A`α. It was defined by
Formulas (78) as well as (53) and (54). The index α can be omitted there (i.e., we turn to
the single-component case here), and then both the expression for A`α and the proven
representation itself take simpler forms

A` := −`qτδθ +
(
Πτ

` δu + w`δp + Q
)
[θ] = `τ

{
[ρ][u]2

(
δε− [p]1

[ρ]2
δρ
)
−Q[u]

}
δθ

+
{(

[u][ρ]ŵ + `τ([u]δp + γ[p]1δu− (γ− 1)Q)
)
δu + w`δp + Q

}
[θ] (A1)

and

A` =
1
τ
[ρ][θ]ŵ2 + `τR

[θ]2

[ρ]

(
δ(ρu)

)2

+`τcV [ρ]
(
[u]δθ + (γ− 1)[θ]δu− Q

2cV [ρ]

)2
+ [θ]Q

(
1− `

τ(γ− 1)Q
4[p]1

)
. (A2)

First, we decompose A` into the sum of terms containing the factors ŵ and w`, other
terms without the factor Q and terms with the factor Q:

A` = [θ]A′` + `τA′′ − `τ
{
[u]δθ + (γ− 1)[θ]δu

}
Q + Q[θ]. (A3)

We transform the terms of A′` as described below

A′` ≡ [ρ][u]ŵδu + w`δp = ŵ[ρ][u]δu +
(
ŵ + `

τ

[ρ]
[u]δ(ρu)

)
δp

= ŵ([ρ][u]δu + δp) + `
τ

[ρ]
[u]δ(ρu) · R(δρ · [θ] + [ρ]δθ)

=
[ρ]

τ
ŵ2 + `τ

R[θ]
[ρ]

δ(ρu) · δρ · [u] + `τR[u]([ρ]δu + [u]δρ)δθ, (A4)

where Formula (45) has been used twice. We regroup the terms of A′′ as follows:

A′′ ≡ [ρ][u]2
(
δε− [p]1

[ρ]2
δρ
)
δθ + ([u]δp + γ[p]1δu)δu · [θ]

= cV [ρ]([u]δθ)2 − R[θ][u]2δρ · δθ + R[u](δρ · [θ] + [ρ]δθ])δu · [θ] + γR[ρ]([θ]δu)2

= cV [ρ]([u]δθ)2 − R[θ][u]2δρ · δθ + R[θ]2(δρ · [u] + [ρ]δu)δu + R[ρ][u]δu · [θ]δθ

+cV(γ− 1)2[ρ]([θ]δu)2,
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since γR = R + cV(γ− 1)2 and, importantly, [p]1 = R[ρ][θ] in (A1) (and the original expres-
sions for the regularizing stress and heat flux (53) and (54)). After further grouping, the first
two terms in decomposition (A3) collapse into a sum of squares with positive coefficients:

[θ]A′` + `A′′ =
[ρ][θ]

τ
ŵ2 + `

τR[θ]2

[ρ]
δ(ρu) · (δρ · [u] + [ρ]δu)

+`τ
{

cV [ρ]([u]δθ)2 + 2R[ρ][u]δu · [θ]δθ + cV [ρ]((γ− 1)[θ]δu)2
}

=
[ρ][θ]

τ
ŵ2 + `

τR[θ]2

[ρ]

{
δ(ρu)

}2
+ `τcV [ρ]

{
[u]δθ + (γ− 1)[θ]δu

}2,

since R = (γ− 1)cV .
Finally, taking into account the terms with the factor Q in decomposition (A3) for A`,

we derive Formula (A2) from the last equality.
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