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a b s t r a c t

Applying the theory of modular metric spaces developed in the first part of this paper
[V.V. Chistyakov, Modular metric spaces I Basic concepts, Nonlinear Anal. (2009)
(submitted for publication)] we define a metric semigroup and an abstract con-
vex cone of functions of finite generalized variation in the approach of Schramm
[M. Schramm, Functions ofΦ-bounded variation and Riemann–Stieltjes integration, Trans.
Amer. Math. Soc. 287 (1) (1985) 49–63], which are significantly larger as compared to
the spaces of bounded variation in the sense of Jordan, Wiener–Young and Waterman.
We present a complete description of generators of Lipschitz continuous, bounded and
some other classes of superposition Nemytskii operators mapping in these semigroups
and cones, which extends recent results by Matkowski and Miś [J. Matkowski, J. Mi, On a
characterization of Lipschitzian operators of substitution in the space BV〈a, b〉, Math.
Nachr. 117 (1984) 155–159], Maligranda and Orlicz [L. Maligranda, W. Orlicz, On some
properties of functions of generalized variation, Monatsh. Math 104 (1987) 53–65],
Zawadzka [G. Zawadzka, On Lipschitzian operators of substitution in the space of set-
valued functions of bounded variation, Rad. Mat. 6 (1990) 279–293] and Chistyakov
[V.V. Chistyakov, Mappings of generalized variation and composition operators, J. Math.
Sci. (New York) 110 (2) (2002) 2455–2466, V.V. Chistyakov, Lipschitzian Nemytskii oper-
ators in the cones of mappings of bounded Wiener ϕ-variation, Folia Math. 11 (1) (2004)
15–39].

© 2009 Published by Elsevier Ltd

4. Introduction to part II1

This paper is a continuation of [1]. Its purpose is to present an exhausting description of Lipschitz continuous and some Q12

other classes of nonlinear superposition operators acting in modular metric spaces of functions of a real variable of finite3

generalized variation in the sense of Schramm [2] with values in metric semigroups and abstract cones. Part of the results4

of this paper were announced in [3] without proofs.5

Let I be a nonempty set (a closed interval [a, b] in R in the sequel), RI be the algebra of all functions y : I → Rmapping6

I into R equipped with the usual pointwise operations and h : I ×R→ R be a given function. The superposition (Nemytskii)7

operator H = Hh : RI → RI generated by h is defined by8

(Hy)(t) = h(t, y(t)), t ∈ I, y ∈ RI .9

The function h is said to be the generator ofH .10

I This work was supported by the State University Higher School of Economics Individual Grant No. 08-01-0074 (Interdisciplinary Investigations).
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Given an interval I = [a, b], denote by BV(I) the subset of RI of all functions y : I → R of bounded Jordan variation 1

V ba (y) = sup
π

m∑
i=1

|y(ti)− y(ti−1)| <∞, 2

where the supremum is taken over all partitions π of I , i.e., π = {ti}mi=1 with m ∈ N and a = t0 < t1 < · · · < tm−1 < 3

tm = b. It is well known that BV(I) is a Banach algebra with respect to the norm ‖y‖ = |y(a)| + V ba (y), y ∈ BV(I), and 4

‖y · z‖ ≤ 2‖y‖ · ‖z‖ for all y, z ∈ BV(I). The last inequality follows immediately from the following two inequalities 5

(e.g., [4, Chapter 8, Section 3, Theorem 3]): 6

|y|∞ ≡ sup
t∈I
|y(t)| ≤ ‖y‖ and V ba (y · z) ≤ V

b
a (y)|z|∞ + |y|∞V

b
a (z). 7

This property of the space BV(I) implies that if the generator h : I × R → R of a superposition operatorH is of the form 8

h(t, y) = x(t)y + h0(t), t ∈ I , y ∈ R, for some functions x and h0 from BV(I), thenH maps BV(I) into itself and satisfies a 9

Lipschitz condition: there exists a constant η ≥ 0 (one can set η = 2‖x‖) such that 10

‖Hy−Hz‖ ≤ η‖y− z‖ for all y, z ∈ BV(I). (4.1) 11

Clearly, property (4.1) with η < 1 is closely connected with the solution of the functional equationHy = y by means of the 12

Banach Contraction Theorem. 13

Conversely,Matkowski andMiś [5] showed that if the superposition operatorH is generated by a function h : I×R→ R, 14

maps BV(I) into itself and satisfies a Lipschitz condition of the form (4.1) for some constant η ≥ 0, then there exist two 15

functions x and h0 from BV(I), which are continuous from the left on (a, b], such that 16

lim
s→t−0

h(s, y) = x(t)y+ h0(t) for all a < t ≤ b and y ∈ R. (4.2) 17

We note that the representation of the form (4.2) for the function h(t, y) (not for the left limit as in (4.2)) was found by 18

Matkowski in [6,7] in the class Lip(I) of Lipschitz functions on I . Such a representation for the generators of Lipschitzian 19

superposition operators does not hold in the algebra of all continuous functions C(I) on I with the uniform norm | · |∞ 20

or in the space Lp(I) of Lebesgue p-summable functions on I , p ≥ 1, with the standard norm (cf. [6]; for example, one 21

can set h(t, y) = sin y for all t ∈ I and y ∈ R). On the other hand, the representation of the form (4.2) is valid in many 22

spaces of functions of one variable, with certain restrictions on the generalized variation if the functions are single-valued 23

[8, Section 6.5], [9–15], or evenmulti-valued [16–24]. The representation of the form (4.2) also holds in the class of functions 24

of several variables of bounded variation in the sense of Vitali–Hardy–Krause [25–30]. 25

In this paper, applying the theory of modular metric spaces from [1], we define a nonlinear space of functions of 26

generalized bounded variation in the approach of Schramm [2], which is significantly larger than the spaces of functions 27

of bounded variation in the sense of Jordan, Wiener–Young [18,31,32] and Waterman [33,34] (Sections 5.2, 5.3, 5.5 and 28

5.6). Then we characterize the generators of Lipschitzian and some other classes of superposition operators, which map in 29

these modular metric spaces (Theorems 6.3, 6.5, 6.8, 6.14 and 6.16). Although the superposition operator is well studied in 30

many classical functional spaces (cf. [8]), in spaces of functions of bounded generalized variation its properties (continuity, 31

compactness, local Lipschitz continuity, differentiability, . . . ) are still not known (cf., however, [35–37]). In this respect our 32

paper fills in certain gaps, which are concerned with the superposition operators in the BV context. 33

The enumeration of sections, subsections, assertions and formulas in this paper is a continuation of the enumeration 34

adopted in [1]. 35

5. Modular semigroups and cones of functions 36

5.1. TheΦ-sequence 37

A sequence Φ = {ϕi}∞i=1 of continuous nondecreasing unbounded functions ϕi : R
+
= [0,∞) → R+, each of which is 38

such that ϕi(u) = 0 if and only if u = 0, satisfying the following two conditions: 39

ϕi+1(u) ≤ ϕi(u) for all i ∈ N and u ∈ R+, (5.1) 40

∞∑
i=1

ϕi(u) = ∞ for all u > 0, (5.2) 41

is said to be a Φ-sequence in the terminology of [2] (note that each function ϕi is a ϕ-function). Such a sequence Φ is said 42

to be convex if all functions ϕi from this sequence are convex (in this case each function ϕi is strictly increasing and has the 43

continuous inverse function ϕ−1i : R
+
→ R+). 44

Examples of Φ-sequences Φ = {ϕi}∞i=1 can be given as sequences, in which ϕi(u) = u, ϕi(u) = ϕ1(u) or ϕi(u) = u/λi 45

for all i ∈ N and u ∈ R+, where {λi}∞i=1 ⊂ (0,∞) is a Waterman sequence, i.e., a nondecreasing sequence such that 46∑
∞

i=1 1/λi = ∞ (cf. [2,33,34]). 47
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5.2. Modular semigroup BVΦ(I;M)1

Let I = [a, b] be a closed interval, (M, d,+) be a metric semigroup with zero 0 ∈ M in the sense of [1, Section 2.14]2

(or an abstract convex cone in the sense of [1, Section 3.12]) and Φ = {ϕi}∞i=1 be a Φ-sequence. Then the set X = M
I of3

all functions x : I → M with the operation (x + y)(t) = x(t) + y(t) (and (αx)(t) = αx(t), α ∈ R+, respectively), where4

t ∈ I and x, y ∈ X , is an Abelian semigroup with zero 0, so that 0(t) = 0 ∈ M for all t ∈ I (in which the operation of5

multiplication by nonnegative numbers is defined satisfying the properties from [1, equalities (3.5)], respectively). Given6

λ > 0 and x, y ∈ X , we set7

wλ(x, y) ≡ wdλ(x, y) = sup
m∑
i=1

ϕi

(1
λ
d
(
x(bi)+ y(ai), y(bi)+ x(ai)

))
,8

where the supremum is taken over all m ∈ N and all
∧
non-ordered collections of non-overlapping intervals [ak, bk] ⊂ I ,9

k = 1, . . . ,m.10

Then w is a metric pseudomodular on X . Clearly, wλ(x, x) = 0 and wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈ X . Now11

ifwλ(x, y) = 0 for all λ > 0, then, given t, s ∈ I , we have:12

ϕ1

(1
λ
d
(
x(t)+ y(s), y(t)+ x(s)

))
≤ wλ(x, y) = 0,13

and so, d(x(t)+ y(s), y(t)+ x(s)) = 0. By the property of the translation invariant metric d [1, inequality (2.3)], we find14

|d(x(t), y(t))− d(x(s), y(s))| ≤ d(x(t)+ y(s), y(t)+ x(s)), (5.3)15

and so, d(x(t), y(t)) = const ∈ R+ for all t ∈ I .16

Let us verify that wλ+µ(x, y) ≤ wλ(x, z) + wµ(y, z) for all λ, µ > 0 and x, y, z ∈ X . Let m ∈ N and {[ak, bk]}mk=1 be a17

∧
non-ordered collection of non-overlapping subintervals of I . By the inequality (2.3) from [1] and the translation invariance18

of d, for any i ∈ {1, . . . ,m}, we have (cf. the estimate Ci ≤ Ai + Bi from [1, Section 2.15]):19

d(x(bi)+ y(ai), y(bi)+ x(ai))
λ+ µ

≤
λ

λ+ µ
·
d(x(bi)+ z(ai), z(bi)+ x(ai))

λ
+

µ

λ+ µ
·
d(y(bi)+ z(ai), z(bi)+ y(ai))

µ
20

≡
λ

λ+ µ
· Ai +

µ

λ+ µ
· Bi, (5.4)21

whence, the monotonicity of ϕi implies22

ϕi

( 1
λ+ µ

d
(
x(bi)+ y(ai), y(bi)+ x(ai)

))
≤ ϕi

( λ

λ+ µ
· Ai +

µ

λ+ µ
· Bi
)

23

≤ max{ϕi(Ai), ϕi(Bi)} ≤ ϕi(Ai)+ ϕi(Bi)24

= ϕi

(1
λ
d(x(bi)+ z(ai), z(bi)+ x(ai))

)
+ ϕi

( 1
µ
d(y(bi)+ z(ai), z(bi)+ y(ai))

)
. (5.5)25

Summing over i = 1, . . . ,m and taking the supremum over all collections of subintervals as above, we arrive at the desired26

inequality.27

Note that, for any x, y ∈ X , the function28

λ 7→ wλ(x, y) is continuous from the right on (0,∞); (5.6)29

this is established as the corresponding fact from [1, Section 2.15]. Moreover, the pseudomodular w on X is translation30

invariant in the sense of [1, equality (3.7)], and if the quadruple (M, d,+, ·) is an abstract convex cone, thenw is in addition31

homogeneous in the sense of [1, equality (3.8)].32

We set BVΦ(I;M) = Xw , where Xw = X◦w(0) is the modular space from [1, Section 2.5] and 0 ∈ X = M
I . By virtue of33

Theorem 3.14(a) from [1], the pair (BVΦ(I;M),+) is an Abelian semigroup with pseudometric d◦w from [1, Theorem 2.6],34

which is translation invariant. Let us show that35

d◦M(x, y) = d(x(a), y(a))+ d
◦

w(x, y), x, y ∈ BVΦ(I;M),36

is a metric on BVΦ(I;M); it
∧
suffices to check only that if d◦M(x, y) = 0, then x = y. In fact, by the definition of d

◦
w(x, y), for37

any number λ > d◦w(x, y) and all t, s ∈ I , setting δ(t, s) = d(x(t)+ y(s), y(t)+ x(s))we have:38

ϕ1
(
δ(t, s)/λ

)
≤ wλ(x, y) ≤ λ. (5.7)39

Let ϕ−11+(v) = max{u ∈ R+ : ϕ1(u) ≤ v} = maxϕ−11 ({v}) ∈ R+, v ∈ R+, be the right inverse function for ϕ1; in particular,40

ϕ−11+ is nondecreasing, vanishes at zero only, and the following (in)equalities hold: u ≤ ϕ
−1
1+(ϕ1(u)) and ϕ1(ϕ

−1
1+(v)) = v for41

all u, v ∈ R+. Applying the former inequality to (5.7), we find42

δ(t, s)/λ ≤ ϕ−11+(ϕ1(δ(t, s)/λ)) ≤ ϕ
−1
1+(λ)43
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or δ(t, s) ≤ λϕ−11+(λ) for all λ > d
◦
w(x, y), whence 1

d(x(t)+ y(s), y(t)+ x(s)) = δ(t, s) ≤ d◦w(x, y) · ϕ
−1
1+

(
d◦w(x, y)

)
. 2

Taking into account (5.3), it follows that 3

d(x(t), y(t)) ≤ d(x(a), y(a))+ d◦w(x, y) · ϕ
−1
1+

(
d◦w(x, y)

)
, t ∈ I. 4

In what follows the sequenceΦ is assumed to be convex. 5

5.3. The modular semigroup and cone BVΦ(I;M) with convexΦ 6

If, under the assumptions of Section 5.2, the sequence Φ is convex, then, as it seen from (5.5), w is a convex metric 7

pseudomodular on X , and so, by the equality (3.2) and Theorem3.14(a) from [1], BVΦ(I;M) = X∗w is an Abelian semigroup 8

with pseudometric d∗w from [1, Theorem 3.6], which is translation invariant. Put 9

dM(x, y) = d(x(a), y(a))+ d∗w(x, y), x, y ∈ BVΦ(I;M). (5.8) 10

Then the triple (BVΦ(I;M), dM ,+) is a metric semigroup with zero 0. It
∧
suffices to verify that if dM(x, y) = 0, then x = y in 11

BVΦ(I;M): in fact, by the definition of d∗w(x, y), given λ > d
∗
w(x, y) and t, s ∈ I , we have 12

ϕ1

(1
λ
d(x(t)+ y(s), y(t)+ x(s))

)
≤ wλ(x, y) ≤ 1, 13

implying d(x(t)+ y(s), y(t)+ x(s)) ≤ ϕ−11 (1)λ, and so, 14

d(x(t)+ y(s), y(t)+ x(s)) ≤ ϕ−11 (1)d
∗

w(x, y). (5.9) 15

It follows from (5.3) that 16

d(x(t), y(t)) ≤ d(x(a), y(a))+ ϕ−11 (1)d
∗

w(x, y) (5.10) 17

≤ max{1, ϕ−11 (1)}dM(x, y), t ∈ I. (5.11) 18

If Φ is convex and (M, d,+, ·) is an
∧
abstract convex cone, then, by virtue of Theorem 3.14 from [1], we find that the 19

quadruple (BVΦ(I;M), d∗w,+, ·) is an abstract convex pseudocone and the quadruple (BVΦ(I;M), dM ,+, ·) is an abstract 20

convex cone. 21

In the sequel the space BVΦ(I;M)will be considered for a convexΦ-sequenceΦ and equipped with metric (5.8). 22

The space BVΦ(I;M) forM = Rwas initially defined in [2], and so, in the general case it is called the space of functions of 23

Φ-bounded variation in the sense of Schramm. The generalized Φ-variation VΦ(x) of a function x ∈ BVΦ(I;M) is the quantity 24

VΦ(x) = d∗w(x, 0). 25

Lemma 5.4. If (M, d) is complete, then (BVΦ(I;M), dM) is complete as well. 26

Proof. Let {xj} ⊂ BVΦ(I;M) be a Cauchy sequence, i.e., 27

dM(xj, xk) = d(xj(a), xk(a))+ d∗w(xj, xk)→ 0 as j, k→∞. 28

Then (5.11) implies that {xj(t)} is a Cauchy sequence in M for all t ∈ I , and so, by the completeness of M , there exists a 29

function x ∈ M I such that d(xj(t), x(t))→ 0 as j→∞ for all t ∈ I . It follows that 30

d∗w(xj, x) ≤ lim infk→∞
d∗w(xj, xk) ≤ limk→∞

dM(xj, xk) <∞, j ∈ N, (5.12) 31

where the first inequality will be established below (cf. (5.14)). Since {xj} is a Cauchy sequence, then it follows from (5.12) 32

that 33

lim sup
j→∞

d∗w(xj, x) ≤ limj→∞
lim
k→∞

dM(xj, xk) = 0, 34

and so, dM(xj, x)→ 0 as j→∞. By the triangle inequality, 35

|d∗w(xj, 0)− d
∗

w(xk, 0)| ≤ d
∗

w(xj, xk)→ 0 as j, k→∞, 36

and so, {d∗w(xj, 0)} is a Cauchy sequence inR. Then it is bounded and convergent, and it remains to note that x ∈ BVΦ(I;M): 37

this follows from (cf. (5.14)) 38

d∗w(x, 0) ≤ lim infj→∞
d∗w(xj, 0) = limj→∞

d∗w(xj, 0) <∞. 39
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In order to prove the first inequality in (5.12), we show that if {xk}, {yk} ⊂ BVΦ(I;M), x, y ∈ M I , d(xk(t), x(t))→ 0 and1

d(yk(t), y(t))→ 0 as k→∞ for all t ∈ I , then2

wλ(x, y) ≤ lim inf
k→∞

wλ(xk, yk) for all λ > 0 (5.13)3

and4

d∗w(x, y) ≤ lim infk→∞
d∗w(xk, yk). (5.14)5

First, we establish (5.13). From the pointwise convergence of xk to x and yk to y and property 2.5 from [1] we find6

d(xk(t)+ yk(s), yk(t)+ xk(s))→ d(x(t)+ y(s), y(t)+ x(s)) as k→∞7

for all t, s ∈ I . The definition of w implies that if m ∈ N and {[ai, bi]}mi=1 is a
∧
non-ordered collection of non-overlapping8

intervals in I , then, given k ∈ N and λ > 0, we have:9

m∑
i=1

ϕi

(1
λ
d
(
xk(bi)+ yk(ai), yk(bi)+ xk(ai)

))
≤ wλ(xk, yk).10

Inequality (5.13) follows if we pass to the
∧
inferior limit as k→∞, take into account the continuity of each function ϕi, and11

then in the resulting inequality take the supremum over allm ∈ N and intervals {[ai, bi]}mi=1 as above.12

In order to prove inequality (5.14), it suffices to assume that the quantity λ = lim infk→∞ d∗w(xk, yk) is finite. Then13

d∗w(xkj , ykj) → λ as j → ∞ over some subsequence {kj}∞j=1 of {k}
∞

k=1. It follows that, given ε > 0, there exists a number14

j0 = j0(ε) such that d∗w(xkj , ykj) < λ+ ε for all j ≥ j0. Then the definition of d∗w implieswλ+ε(xkj , ykj) ≤ 1 for all j ≥ j0. Since15

xkj and ykj converge pointwise on I to x and y as j→∞, respectively, then, by (5.13), we find16

wλ+ε(x, y) ≤ lim inf
j→∞

wλ+ε(xkj , ykj) ≤ 1,17

and this means that d∗w(x, y) ≤ λ+ ε for all ε > 0, and so, (5.14) follows. �18

Note that Lemma 5.4 holds also for the space BVΦ(I;M)with metric d◦M whenΦ andw are not necessarily convex.19

5.5. Spaces of Lipschitzian and additive operators20

(a) Let (N, d) and (M, d) be two metric spaces (with different metrics d, in general). Recall that an operator T : N → M21

is said to be Lipschitzian (or Lipschitz continuous), which is written as T ∈ Lip(N;M), if its (least) Lipschitz constant given by22

L(T ) = sup{d(Ty, Tz)/d(y, z) : y, z ∈ N, y 6= z}23

is finite.24

(b) If (M, d,+) is a metric semigroup (or an abstract convex cone), then the set Lip(N;M) is an Abelian semigroup with25

respect to the pointwise addition operation (T + S)y = Ty + Sy for all y ∈ N , because, by virtue of (2.4) from [1], we26

have L(T + S) ≤ L(T ) + L(S) (in Lip(N;M) the pointwise operation of multiplication by numbers α ∈ R+ is defined27

as (αT )y = α(Ty), y ∈ N , so that L(αT ) = αL(T ), respectively), where T , S ∈ Lip(N;M). In this case, given λ > 0 and28

T , S ∈ Lip(N;M), we set29

Wλ(T , S) =
1
λ
sup

{d(Ty+ Sz, Sy+ Tz)
d(y, z)

: y, z ∈ N, y 6= z
}

30

and31

D(T , S) ≡ W1(T , S) = λWλ(T , S).32

Note that, by virtue of (2.3) and (2.4) from [1], we have:33

|L(T )−L(S)| ≤ D(T , S) ≤ L(T )+L(S), (5.15)34

|d(Ty, Sy)− D(Tz, Sz)| ≤ d(Ty+ Sz, Sy+ Tz) ≤ D(T , S)d(y, z), y, z ∈ N. (5.16)35

The functionW is a convex metric pseudomodular on Lip(N;M); the convexity ofW follows from the inequality similar to36

(5.4): if R ∈ Lip(N;M), then37

d(Ty+ Sz, Sy+ Tz) ≤ d(Ty+ Rz, Ry+ Tz)+ d(Sy+ Rz, Ry+ Sz), y, z ∈ N.38

Also,W satisfies an analogue of condition (3.7) from [1] (and condition (3.8) from [1] if M is an abstract convex cone).39

So, by [1, Theorem 3.14] and (5.15), the space40 (
Lip(N;M)

)∗
W (C) = Lip(N;M),41
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where C : N → M is an arbitrary constant operator (zero in the sequel), is a pseudometric semigroup (or an abstract convex 1

pseudocone ifM is an abstract convex cone, respectively) with pseudometric 2

d∗W (T , S) = D(T , S), T , S ∈ Lip(N;M), 3

and L(T ) = D(T , C). The definition of pseudometric D on the space of Lipschitzian operators Lip(N;M) was proposed 4

in [21]. 5

The following counterpart of inequality (5.14) holds: if {Tk}, {Sk} ⊂ Lip(N;M) and operators T , S : N → M are such that 6

d(Tky, Ty)→ 0 and d(Sky, Sy)→ 0 as k→∞ for all y ∈ N , then 7

D(T , S) ≤ lim inf
k→∞

D(Tk, Sk). (5.17) 8

(c) Let (N, d,+) be a metric semigroup and (M, d,+) be a metric semigroup (or an abstract convex cone). Denote by 9

Add(N;M) = {T : N → M | T (y+ z) = Ty+ Tz M for all y, z ∈ N} 10

the Abelian semigroup of all additive operators mapping N intoM and equipped with the pointwise operations of addition 11

(and multiplication by nonnegative numbers, respectively). 12

(d) Now let (N, d,+) and (M, d,+) be two metric semigroups with (different, in general) zeros 0. Note that if T ∈ 13

Add(N;M), then T (0) = 0: in fact, T (0) = T (0 + 0) = T (0) + T (0), and so, d(0, T (0)) = d(T (0), T (0) + T (0)) = 0. The 14

zero in Add(N;M) and Lip(N;M) is the operator 0 : N → M such that 0y = 0 ∈ M for all y ∈ N . 15

In what follows we will need the following two Abelian semigroups with zeros: 16

Lip0(N;M) = {T ∈ Lip(N;M) : T (0) = 0}, 17

L(N;M) = Lip(N;M) ∩ Add(N;M). 18

Clearly, L(N;M) ⊂ Lip0(N;M) ⊂ Lip(N;M). Moreover, if T , S ∈ Lip0(N;M) and y, z ∈ N , then (5.16) implies 19

d(Ty, Sy) ≤ D(T , S)d(y, 0), (5.18) 20

d(Ty, Tz) ≤ D(T , 0)d(y, z), (5.19) 21

and so,W is a convex modular on Lip0(N;M) and L(N;M), and D is a translation invariant metric on these spaces (which 22

is homogeneous if M is an abstract convex cone). Moreover, L(T ) = D(T , 0) if T ∈ Lip0(N;M), and if (M, d) is complete, 23

then, by virtue of (5.16) and (5.17), Lip0(N;M) and L(N;M) endowed with metric D are complete spaces as well. 24

(e) Finally, note that if (N, d,+, ·) and (M, d,+, ·) are two abstract convex cones, then any additive continuous operator 25

T : N → M also have the following property: T (αy) = αTy for all α ∈ R+ and y ∈ N (cf., e.g., the text preceding Section 3 26

in [27]). 27

5.6. The spaces BVΦ(I; Lip0(N;M)) and BVΦ(I; L(N;M)) 28

Suppose that (N, d,+) and (M, d,+) are two metric semigroups with zeros (or M is an abstract convex cone) and Φ 29

is a convex Φ-sequence. Replacing M by Lip0(N;M) or L(N;M) in Section 5.3 and taking into account Section 5.5(d) we 30

find that on themetric semigroup (abstract convex cone, respectively) BVΦ(I; Lip0(N;M)) or BVΦ(I; L(N;M)) the following 31

translation invariant (and homogeneous ifM is an abstract convex cone) metric is well defined (cf. (5.8)): 32

DN,M(x, y) = D(x(a), y(a))+ D∗w(x, y), x, y ∈ BVΦ(I; Lip0(N;M)), 33

where D∗w(x, y) = inf{λ > 0 : w
D
λ (x, y) ≤ 1} and 34

wDλ (x, y) = sup
m∑
i=1

ϕi

(1
λ
D
(
x(bi)+ y(ai), y(bi)+ x(ai)

))
, 35

the supremum being taken over the same collection {[ai, bi]}mi=1 as in Section 5.2. In particular, we have analogues of 36

inequalities (5.9) and (5.10), where d is replaced by D. 37

6. Superposition operators on spaces BVΦ 38

6.1. Nonautonomous superposition operatorH 39

Let I , M and N be nonempty sets and M I be the set of all functions mapping I into M . Given a function h : I × N → M , 40

the operator H : N I → M I , defined by (Hy)(t) = h(t, y(t)) for all t ∈ I and y ∈ N I , is said to be the (nonautonomous) 41

superposition (Nemytskii) operator with the generator h. 42
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6.2. Assumptions1

Throughout Section 6 we suppose that I = [a, b] is a closed interval in R, a < b, (N, d,+) and (M, d,+) are two metric2

semigroups with zeros andΦ = {ϕi}∞i=1 is a convexΦ-sequence.3

Theorem 6.3. If x ∈ BVΦ(I; Lip0(N;M)) and y ∈ BVΦ(I;N), then the function xy : I → M, given by (xy)(t) = x(t)y(t) for all4

t ∈ I , belongs to the metric semigroup BVΦ(I;M), and the following inequality holds:5

dM(xy, 0) ≤ γ (Φ)DN,M(x, 0)dN(y, 0), where γ (Φ) = max{1, 2ϕ−11 (1)}. (6.1)6

Proof. By definition (5.8), we have:7

dM(xy, 0) = d((xy)(a), 0)+ d∗w(xy, 0).8

Since x(a) ∈ Lip0(N;M), by virtue of (5.19), we find9

d((xy)(a), 0) = d(x(a)y(a), x(a)(0)) ≤ D(x(a), 0)d(y(a), 0) = A0B0, (6.2)10

where we have set A0 = D(x(a), 0), B0 = d(y(a), 0). It remains to show that11

d∗w(xy, 0) ≤ Aλ+ µB, (6.3)12

where λ = d∗w(y, 0), µ = D
∗
w(x, 0) and, taking into account (5.10),13

B = sup
t∈I
d(y(t), 0) ≤ d(y(a), 0)+ ϕ−11 (1)d

∗

w(y, 0) = B0 + ϕ
−1
1 (1)λ (6.4)14

and (similarly, replacing d by D in (5.10))15

A = sup
t∈I
D(x(t), 0) ≤ D(x(a), 0)+ ϕ−11 (1)D

∗

w(x, 0) = A0 + ϕ
−1
1 (1)µ. (6.5)16

In fact, it follows from (5.8) that dN(y, 0) = B0 + λ and DN,M(x, 0) = A0 + µ, and so, (6.2)–(6.5) imply:17

dM(xy, 0) ≤ A0B0 + Aλ+ µB18

≤ A0B0 + (A0 + ϕ−11 (1)µ)λ+ µ(B0 + ϕ
−1
1 (1)λ)19

≤ γ (Φ)(A0 + µ)(B0 + λ), (6.6)20

and the inequality (6.1) follows.21

Let us establish (6.3). Given t, s ∈ I , by virtue of (5.19) and (5.18), we have:22

d((xy)(t), (xy)(s)) ≤ d(x(t)y(t), x(t)y(s))+ d(x(t)y(s), x(s)y(s))23

≤ D(x(t), 0)d(y(t), y(s))+ D(x(t), x(s))d(y(s), 0)24

≤ Ad(y(t), y(s))+ D(x(t), x(s))B. (6.7)25

First, suppose thatAB 6= 0 andλµ 6= 0. Applying (6.7) and the convexity of functionsϕi, for any collection of
∧
non-overlapping26

intervals {[ai, bi]}mi=1 from I , we find27

m∑
i=1

ϕi

( 1
Aλ+ µB

d
(
(xy)(bi), (xy)(ai)

))
≤

m∑
i=1

ϕi

( Aλ
Aλ+ µB

·
d(y(bi), y(ai))

λ
+

µB
Aλ+ µB

·
D(x(bi), x(ai))

µ

)
28

≤
Aλ

Aλ+ µB

m∑
i=1

ϕi

(1
λ
d(y(bi), y(ai))

)
+

µB
Aλ+ µB

m∑
i=1

ϕi

( 1
µ
D(x(bi), x(ai))

)
29

≤
Aλ

Aλ+ µB
wdλ(y, 0)+

µB
Aλ+ µB

wDµ(x, 0), (6.8)30

whence31

wdAλ+µB(xy, 0) ≤
Aλ

Aλ+ µB
wdλ(y, 0)+

µB
Aλ+ µB

wDµ(x, 0). (6.9)32

Taking into account the continuity from the right (5.6) of functions ξ 7→ wdξ (y, 0) and η 7→ wDη (x, 0) on (0,∞) and33

applying [1, Theorem 3.8(c)], we get wdλ(y, 0) ≤ 1 and w
D
µ(x, 0) ≤ 1. Then (6.9) implies w

d
Aλ+µB(xy, 0) ≤ 1, and so,34

we obtain the inclusion xy ∈ BVΦ(I;M) and the inequality (6.3), which are consequences of the definition of the space35

BVΦ(I;M) = X∗w(0) from Section 5.3 and metric d
∗
w from [1, Theorem 3.6].36
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Suppose that AB = 0. Since D is a metric on Lip0(N;M) and d is a metric on N , then x = 0 in (Lip0(N;M))I or y = 0 in 1

N I , and so, the left and right hand sides of inequalities (6.7) and (6.3) are equal to zero. Now let AB 6= 0. If λ = 0, then, by 2

(5.9), the function y : I → N is constant, and so, we find from (6.7) that 3

d((xy)(t), (xy)(s)) ≤ D(x(t), x(s))B, t, s ∈ I. (6.10) 4

Ifµ = 0, then (by similar arguments) the function x : I → Lip0(N;M) is constant, and so, by (6.10), the function xy : I → M 5

is also constant. Therefore, wdξ (xy, 0) = 0 for all ξ > 0, whence d
∗
w(xy, 0) = 0. Now if µ 6= 0, then, by virtue of (6.10), 6

instead of inequality (6.8) we get: 7

m∑
i=1

ϕi

( 1
µB
d
(
(xy)(bi), (xy)(ai)

))
≤

m∑
i=1

ϕi

( 1
µ
D(x(bi), x(ai))

)
≤ wDµ(x, 0), 8

implying wdµB(xy, 0) ≤ wDµ(x, 0) ≤ 1, the last inequality being obtained, as above, from (5.6) and [1, Theorem 3.8(c)]. It 9

follows that d∗w(xy, 0) ≤ µB, and (6.3) follows. Finally, supposing that λ 6= 0 and µ = 0 and arguing as above we find that 10

the function x is constant, (6.7) implies the inequality 11

d((xy)(t), (xy)(s)) ≤ Ad(y(t), y(s)), t, s ∈ I, 12

from which we getwdAλ(xy, 0) ≤ w
d
λ(y, 0) ≤ 1, and so, d

∗
w(xy, 0) ≤ Aλ. � 13

Remark 6.4. Clearly, Theorem 6.3 remains valid if we replace the condition x ∈ BVΦ(I; Lip0(N;M)) by a more strict 14

condition x ∈ BVΦ(I; L(N;M)). In this case if N = M = R, then Theorem 6.3 and Lemma 5.4 show that BVΦ(I;R) is a 15

Banach algebra. Thus, Theorem 6.3 refines and generalizes the results from [10,18,38,31,39,32,40,2,23]. 16

Theorem 6.5. If, under the assumptions 6.2, x ∈ BVΦ(I; L(N;M)), h0 ∈ BVΦ(I;M) and the generator h : I × N → M of the 17

superposition operator H : N I → M I is of the form h(t, y) = x(t)y + h0(t) for all t ∈ I and y ∈ N, thenH maps BVΦ(I;N) 18

into BVΦ(I;M) and is Lipschitzian (and also additive if h0 = 0) andL(H) ≤ γ (Φ)DN,M(x, 0). 19

Proof. First, we show that H maps from BVΦ(I;N) into BVΦ(I;M). Let y ∈ BVΦ(I;N). Then (Hy)(t) = h(t, y(t)) = 20

x(t)y(t) + h0(t), t ∈ I , i.e.,Hy = xy + h0. By Theorem 6.3, xy ∈ BVΦ(I;M), and so,Hy ∈ BVΦ(I;M) and, by virtue of the 21

inequality (2.4) from [1], d∗w(Hy, 0) ≤ d
∗
w(xy, 0)+ d

∗
w(h0, 0) and dM(Hy, 0) ≤ dM(xy, 0)+ dM(h0, 0). 22

Now, let us prove thatH is Lipschitzian. Let y, z ∈ BVΦ(I;N). In view of (5.8) and translation invariance of dM , we have 23

to estimate the quantity: 24

dM(Hy,Hz) = dM(xy, xz) = d((xy)(a), (xz)(a))+ d∗w(xy, xz). 25

By (5.19), the first term is estimated as 26

d((xy)(a), (xz)(a)) = d(x(a)y(a), x(a)z(a)) ≤ D(x(a), 0)d(y(a), z(a)) = A0B0 27

with A0 = D(x(a), 0) and B0 = d(y(a), z(a)). It remains to show that 28

d∗w(xy, xz) ≤ Aλ+ µB, (6.11) 29

where λ = d∗w(y, z), µ = D
∗
w(x, 0), A = supt∈I D(x(t), 0) is defined and estimated in (6.5) and, by virtue of (5.10), 30

B = sup
t∈I
d(y(t), z(t)) ≤ d(y(a), z(a))+ ϕ−11 (1)d

∗

w(y, z) = B0 + ϕ
−1
1 (1)λ. 31

In fact, in accordance with (5.8) we have dN(y, z) = B0 + λ and DN,M(x, 0) = A0 + µ, and arguing as in (6.6), we arrive at 32

the estimate forL(H) from Theorem 6.5, because 33

dM(Hy,Hz) ≤ A0B0 + Aλ+ µB ≤ γ (Φ)(A0 + µ)(B0 + λ). 34

Now we establish (6.11). Given t, s ∈ I , by the
∧
additivity property of operators x(t), we have the equality: 35

[(xy)(t)+ (xz)(s)] + [x(t)(z(t)+ y(s))] + [x(s)y(s)+ x(t)z(s)] 36

= [(xz)(t)+ (xy)(s)] + [x(t)(y(t)+ z(s))] + [x(t)y(s)+ x(s)z(s)]. 37

Denote by `k (by rk) the k-th term in the square bracket on the left (right, respectively) hand side of this equality, k = 1, 2, 3, 38

so that `1 + `2 + `3 = r1 + r2 + r3. Then it follows from [1, inequality (2.4)] that 39

d(`1, r1) = d(`1 + `2 + `3, r1 + `2 + `3) = d(r1 + r2 + r3, r1 + `2 + `3) 40

= d(r2 + r3, `2 + `3) ≤ d(r2, `2)+ d(r3, `3), (6.12) 41
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which, by virtue of (5.19) and (5.16), can be rewritten as1

d((xy)(t)+ (xz)(s), (xz)(t)+ (xy)(s)) ≤ d
(
x(t)(y(t)+ z(s)), x(t)(z(t)+ y(s))

)
2

+ d
(
x(t)y(s)+ x(s)z(s), x(s)y(s)+ x(t)z(s)

)
3

≤ D(x(t), 0)d(y(t)+ z(s), z(t)+ y(s))+ D(x(t), x(s))d(y(s), z(s))4

≤ Ad(y(t)+ z(s), z(t)+ y(s))+ D(x(t), x(s))B. (6.13)5

Suppose that AB 6= 0 and λµ 6= 0. It follows from (6.13) and the convexity of ϕi that, given a collection of
∧
non-overlapping6

intervals {[ai, bi]}mi=1 from I ,7

m∑
i=1

ϕi

( 1
Aλ+ µB

d
(
(xy)(bi)+ (xz)(ai), (xz)(bi)+ (xy)(ai)

))
8

≤
Aλ

Aλ+ µB

m∑
i=1

ϕi

(1
λ
d(y(bi)+ z(ai), z(bi)+ y(ai))

)
+

µB
Aλ+ µB

m∑
i=1

ϕi

( 1
µ
D(x(bi), x(ai))

)
9

≤
Aλ

Aλ+ µB
wdλ(y, z)+

µB
Aλ+ µB

wDµ(x, 0),10

whence11

wdAλ+µB(xy, xz) ≤
Aλ

Aλ+ µB
wdλ(y, z)+

µB
Aλ+ µB

wDµ(x, 0). (6.14)12

By (5.6), functions ξ 7→ wdξ (y, z) and η 7→ wDη (x, 0) are continuous from the right on (0,∞), and so, by [1, Theorem 3.8(c)],13

we findwdλ(y, z) ≤ 1 andw
D
µ(x, 0) ≤ 1. Then the estimate (6.14) impliesw

d
Aλ+µB(xy, xz) ≤ 1, whence the inequality (6.11)14

follows.15

If AB = 0, then, since D is a metric on L(N;M) and d is a metric on N , then x = 0 in L(N;M)I or y = z in N I , and16

so, the left and right hand sides in (6.13) and (6.11) are equal to zero. Now let AB 6= 0. If λ = 0, then, by virtue of (5.9),17

d(y(t)+ z(s), z(t)+ y(s)) = 0, and so, (6.13) implies18

d
(
(xy)(t)+ (xz)(s), (xz)(t)+ (xy)(s)

)
≤ D(x(t), x(s))B, t, s ∈ I. (6.15)19

If µ = 0, then it follows from (5.9), where d is replaced by D, that the function x : I → L(N;M) is constant, so that, for all20

t, s ∈ I , the left hand side in (6.15) is equal to zero. Then the definition of the pseudomodular w implies wdη(xy, xz) = 021

for all η > 0, and so, d∗w(xy, xz) = 0. Now if µ 6= 0, then it follows from (6.15) that w
d
µB(xy, xz) ≤ w

D
µ(x, 0) ≤ 1 (instead22

of (6.14)), and so, d∗w(xy, xz) ≤ µB. Finally, assumimg that λ 6= 0 and µ = 0 we find that the function x is constant, and23

inequality (6.13) implieswdAλ(xy, xz) ≤ w
d
λ(y, z) ≤ 1, and so, d

∗
w(xy, xz) ≤ Aλ.24

Now if h0 = 0, the additivity of the operator H follows from the additivity of operators x(t): in fact, if t ∈ I and25

y, z ∈ BVΦ(I;N), then26

H(y+ z)(t) = x(t)(y+ z)(t) = x(t)(y(t)+ z(t)) = x(t)y(t)+ x(t)z(t)27

= (Hy)(t)+ (Hz)(t) = (Hy+Hz)(t). �28

Remark 6.6. Although the proofs of Theorems 6.3 and 6.5 follow the same universal scheme, generally the former theorem29

is not a consequence of the latter theorem (formallywith z = 0): in fact, the assumption in Theorem6.5 that all the operators30

x(t) are additive is much more strict than condition x(t) ∈ Lip0(N;M) in Theorem 6.3 and, moreover, this assumption is31

essential for the validity of Theorem 6.5 (cf. Theorem 6.14 and Remark 6.15(c) below). However, in a weaker formulation,32

when x ∈ BVΦ(I; L(N;M)), Theorem 6.3 follows from Theorem 6.5 if z(t) = 0 in N for all t ∈ I . Theorem 6.5 generalizes the33

results from [10,18] when the sequenceΦ is constant.34

6.7. A variant of the superposition operator35

Let I ,N andM be three nonempty sets andMN denotes the set of allmaps fromN intoM . Given a function g : I×MN → M ,36

define the operator G : (MN)I → M I by (Gx)(t) = g(t, x(t)) for all t ∈ I and x : I → MN . The operator G is a superposition37

operator with generator g in the sense of definition 6.1 if we note that the set N in definition 6.1 is replaced here byMN .38

Theorem 6.8. If, under the assumptions 6.2, y ∈ BVΦ(I;N), h0 ∈ BVΦ(I;M) and the generator g : I × MN → M of the39

superposition operator G : (MN)I → M I is of the form g(t, x) = xy(t) + h0(t) for all t ∈ I and x ∈ MN , then G maps the40

metric semigroup BVΦ(I; Lip0(N;M)) into the metric semigroup BVΦ(I;M) and is Lipschitzian (and also additive if h0 = 0) and41

L(G) ≤ γ (Φ)d N(y, 0).42
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Proof. The scheme of proof is the same as that of Theorem 6.5 (and Theorem 6.3). So, we expose only the main ingradients. 1

Let x ∈ BVΦ(I; Lip0(N;M)). Given t ∈ I , we have (Gx)(t) = x(t)y(t) + h0(t), and so, Gx = xy + h0. By Theorem 6.3, 2

xy ∈ BVΦ(I;M), and so, Gx ∈ BVΦ(I;M). 3

In order to show that G is Lipschitzian, we fix x, x ∈ BVΦ(I; Lip0(N;M)). Noting that, by virtue of (5.8), 4

dM(Gx,Gx) = dM(xy, xy) = d((xy)(a), (xy)(a))+ d∗w(xy, xy) 5

and, by virtue of (5.18), 6

d((xy)(a), (xy)(a)) = d(x(a)y(a), x(a)y(a)) ≤ D(x(a), x(a))d(y(a), 0) = A0B0 7

with A0 = D(x(a), x(a)) and B0 = d(y(a), 0), it remains to show that 8

d∗w(xy, xy) ≤ Aλ+ µB, (6.16) 9

where λ = d∗w(y, 0), µ = D
∗
w(x, x), B = supt∈I d(y(t), 0) is defined and estimated in (6.4) and, by virtue of (5.10) with d 10

replaced by D, 11

A = sup
t∈I
D(x(t), x(t)) ≤ D(x(a), x(a))+ ϕ−11 (1)D

∗

w(x, x) = A0 + ϕ
−1
1 (1)µ. 12

In fact, definition (5.8) implies dN(y, 0) = B0+ λ and DN,M(x, x) = A0+µ, and so, (6.16) and the estimates for A and B give 13

(as in (6.6)): 14

dM(xy, xy) ≤ A0B0 + Aλ+ µB ≤ γ (Φ)(A0 + µ)(B0 + λ), 15

whence the desired estimate of the Lipschitz constantL(G) of G follows. 16

In order to establish (6.16), note that, given t, s ∈ I , we have: 17

[(xy)(t)+ (xy)(s)] + [x(s)y(t)+ x(s)y(s)] + [(x(t)+ x(s))y(t)] 18

= [(xy)(t)+ (xy)(s)] + [x(s)y(t)+ x(s)y(s)] + [(x(t)+ x(s))y(t)]. 19

Applying inequality (6.12), the arguments preceding it and inequalities (5.16) and (5.18), we get: 20

d((xy)(t)+ (xy)(s), (xy)(t)+ (xy)(s)) ≤ d
(
x(s)y(t)+ x(s)y(s), x(s)y(t)+ x(s)y(s)

)
21

+ d
(
(x(t)+ x(s))y(t), (x(t)+ x(s))y(t)

)
22

≤ D(x(s), x(s))d(y(t), y(s))+ D(x(t)+ x(s), x(t)+ x(s))d(y(t), 0) 23

≤ Ad(y(t), y(s))+ D(x(t)+ x(s), x(t)+ x(s))B. 24

In the case when AB 6= 0 and λµ 6= 0 we deduce the estimate 25

wdAλ+µB(xy, xy) ≤
Aλ

Aλ+ µB
wdλ(y, 0)+

µB
Aλ+ µB

wDµ(x, x) ≤ 1 26

(note that wdλ(y, 0) ≤ 1 and w
D
µ(x, x) ≤ 1), from which (6.16) follows. The cases when AB = 0 or λµ = 0 are considered 27

in the same way as in the proofs of Theorems 6.3 and 6.5. The additivity of G for h0 = 0 follows from the definition of the 28

addition operation in Lip0(N;M). � 29

As it will be shown below, Theorems 6.5 and 6.8 almost completely characterize Lipschitzian superposition operatorsH 30

and G between spaces of the form BVΦ(I; · ) (more precisely, see definition 6.11 and Theorems 6.14 and 6.16 below). For 31

this, we need four more lemmas (Lemmas 6.9, 6.10, 6.12 and 6.13). 32

Lemma 6.9. If Φ is a convexΦ-sequence and ζ : I = [a, b] → R is a monotone function, thenwλ(ζ , 0) = ϕ1(|ζ (b)−ζ (a)|/λ) 33

for all λ > 0 and d∗w(ζ , 0) = |ζ (b)− ζ (a)|/ϕ
−1
1 (1). 34

Proof. By the definition ofwλ(ζ , 0), we have: ϕ1(|ζ (b)− ζ (a)|/λ) ≤ wλ(ζ , 0) for all λ > 0. Note that the convex function 35

ϕ1 is strictly increasing and superadditive: ϕ1(u)+ϕ1(v) ≤ ϕ1(u+v), u, v ∈ R+. It follows that if {[ak, bk]}mk=1 is a collection 36

of
∧
non-overlapping intervals in I such that a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm ≤ b, then, by virtue of (5.1), for each 37

permutation σ : {1, . . . ,m} → {1, . . . ,m}, we get: 38

m∑
i=1

ϕσ(i)

(
|ζ (bi)− ζ (ai)|

λ

)
≤

m∑
i=1

ϕ1

(
|ζ (bi)− ζ (ai)|

λ

)
39

≤ ϕ1

(1
λ

m∑
i=1

|ζ (bi)− ζ (ai)|
)
≤ ϕ1

(
|ζ (b)− ζ (a)|

λ

)
, 40

whence the arbitrariness of intervals {[ak, bk]}mk=1 implies 41

wλ(ζ , 0) = ϕ1(|ζ (b)− ζ (a)|/λ), λ > 0. 42
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If ζ (b) = ζ (a), then ζ is constant, wλ(ζ , 0) = 0 for all λ > 0 and d∗w(ζ , 0) = 0. Now if ζ (b) 6= ζ (a), then wλ(ζ , 0) = 1 if1

and only if λ = |ζ (b)− ζ (a)|/ϕ−11 (1), and so, by [1, Theorem 3.8(b)], d
∗
w(ζ , 0) = λ. �2

Lemma 6.10. Let (M, d,+) be a complete metric semigroup with zero and Φ = {ϕi}∞i=1 be a convex Φ-sequence. Then, given a3

function x ∈ BVΦ(I;M), there exist the limit from the left x(t − 0) = lims→t−0 x(s) ∈ M at each point a < t ≤ b and the limit4

from the right x(t + 0) = lims→t+0 x(s) ∈ M at each point a ≤ t < b, and the set of all points of discontinuity of x on I is at5

most countable.6

If M = R, this assertion is established in [2, p. 51, 2-nd paragraph]. In the general case it can be established in a7

straightforward way or follows from more general results in [41, Lemma 3 and example 7 in Section 3], [42, Section 6.1]8

and [43, Theorem 3].9

6.11. The left regularization10

Let (M, d,+) be a complete metric semigroup with zero and Φ be a convex Φ-sequence. Given x ∈ BVΦ(I;M), define11

its left regularization x− : I → M by12

x−(t) = x(t − 0) if a < t ≤ b, and x−(a) = x−(a+ 0) = x(a+ 0),13

where the limits in the equalities above are calculated in the space M , and so, by Lemma 6.10, the function x− : I → M is14

well defined. Denote by BV−Φ(I;M) the set of all functions x from BVΦ(I;M), which are continuous from the left on (a, b]15

(i.e., x−(t) = x(t) for all t ∈ (a, b]). Under the assumptions above, we have16

Lemma 6.12. If x ∈ BVΦ(I;M), then x− ∈ BV−Φ(I;M), and the following inequality holds: d∗w(x
−, 0) ≤ d∗w(x, 0).17

Proof. 1. Let us show that the function x− is continuous from the left at each point a < t ≤ b. By Lemma 6.10, the set of18

points of continuity of x is dense in I = [a, b], and so, there exists a sequence {sn}∞n=1 ⊂ (a, t) of points of continuity of x19

such that sn → t as n→∞. It follows that20

lim
s→t−0

x−(s) = lim
n→∞

x−(sn) = lim
n→∞

x(sn) = lim
s→t−0

x(s) = x−(t) inM.21

2. Let us prove that x− ∈ BVΦ(I;M) and d∗w(x
−, 0) ≤ d∗w(x, 0). We may suppose that λ = d

∗
w(x, 0) > 0 (otherwise, by22

virtue of (5.9), the function x is constant). It follows from (5.6) and [1, Theorem 3.8(c)] thatwdλ(x, 0) ≤ 1. Let {tn}n∈Q ⊂ (a, b]23

be the set of points, where the function x is discontinuous from the left and Q is an at most countable set. With no loss of24

generality we assume that Q = N.25

2a. Define the function x1 : I → M by x1(t) = x(t) if t 6= t1 and x1(t1) = x−(t1). Let us show that x1 ∈ BVΦ(I;M) and26

d∗w(x1, 0) ≤ λ. Fix ε > 0 arbitrarily. Let m ∈ N, {[ai, bi]}mi=1 be a collection of
∧
non-overlapping intervals from I such that27

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm ≤ b and σ : {1, . . . ,m} → {1, . . . ,m} be a permutation. Set28

Si(x) = ϕσ(i)
(1
λ
d(x(bi), x(ai))

)
if i ∈ {1, . . . ,m}, and S(x) =

m∑
i=1

Si(x).29

From the definition ofwdλ(x, 0)we find S(x) ≤ w
d
λ(x, 0) ≤ 1. We have to estimate the quantity S(x1). If t1 6∈ {ai}

m
i=1∪{bi}

m
i=1,30

then S(x1) = S(x) ≤ 1; otherwise, we have either (A) t1 = aj for some j ∈ {1, . . . ,m} or (B) t1 = bj for some j ∈ {1, . . . ,m}.31

In the case (A) we set b0 = a. We have three possibilities: (A1) j ≥ 1 and bj−1 6= aj; (A2) j = 1 and b0 = a1; (A3) j ≥ 232

and bj−1 = aj. In the cases (A1) and (A2) we find that Si(x1) = Si(x) for all i ∈ {1, . . . ,m}, i 6= j, and, by the definition of33

x−(aj) and the continuity of metric d and function ϕσ(j), there exists a point a′j such that a
′

j ∈ (bj−1, aj) in the case (A1) or34

a′j ∈ (bj−1, bj) in the case (A2) and35

Sj(x1) = ϕσ(j)
(1
λ
d(x(bj), x−(aj))

)
≤ ϕσ(j)

(1
λ
d(x(bj), x(a′j))

)
+ ε. (6.17)36

Since, under the assumptions (A1) or (A2), the intervals [a1, b1], . . . , [aj−1, bj−1], [a′j, bj], [aj+1, bj+1], . . . , [am, bm] are still37

nonoverlapping, this implies38

S(x1) =
j−1∑
i=1

Si(x)+ Sj(x1)+
m∑

i=j+1

Si(x) ≤ wdλ(x, 0)+ ε ≤ 1+ ε.39

If possibility (A3) holds, then Si(x1) = Si(x) for all i ∈ {1, . . . ,m}, i 6= j− 1, i 6= j, and applying the definition of x−(aj) and40

continuity of d, ϕσ(j−1) and ϕσ(j), we find a point a′j ∈ (aj−1, aj) such that (6.17) holds and41

Sj−1(x1) = ϕσ(j−1)
(1
λ
d(x−(aj), x(aj−1))

)
≤ ϕσ(j−1)

(1
λ
d(x(a′j), x(aj−1))

)
+ ε.42
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Since [a1, b1], . . . , [aj−2, bj−2], [aj−1, a′j], [a
′

j, bj], [aj+1, bj+1], . . . , [am, bm] are
∧
non-overlapping intervals, we get: 1

S(x1) =
j−2∑
i=1

Si(x)+ Sj−1(x1)+ Sj(x1)+
m∑

i=j+1

Si(x) ≤ wdλ(x, 0)+ 2ε ≤ 1+ 2ε. 2

In the case (B) we also have three possibilities: (B1) m = 1; (B2) m ≥ 2, 1 ≤ j ≤ m − 1 and aj+1 6= bj; (B3) m ≥ 2, 3

1 ≤ j ≤ m − 1 and aj+1 = bj, and they are considered similarly. Thus, given a collection of intervals {[ai, bi]}mi=1 as above, 4

we have S(x1) ≤ 1 + 2ε. Taking the supremum over all these collections we find wdλ(x1, 0) ≤ 1 + 2ε. By the arbitrariness 5

of ε > 0, we getwdλ(x1, 0) ≤ 1, and so, d
∗
w(x1, 0) ≤ λ. 6

2b. Given n ∈ N, we define the function xn : I → M by xn(t) = x(t) if t ∈ I \ {t1, . . . , tn}, and xn(ti) = x−(ti) for 7

all i = 1, . . . , n, and note that xn and xn−1 are different only at the point t = tn, for which xn(t) = xn−1(t) if t 6= tn, and 8

xn(tn) = (xn−1)−(tn). The arguments of step 2a imply that xn ∈ BVΦ(I;M) and 9

d∗w(xn, 0) ≤ d
∗

w(xn−1, 0) ≤ · · · ≤ d
∗

w(x1, 0) ≤ λ for all n ∈ N. 10

Nowwe define the function x∞ : I → M by x∞(t) = x(t) if t 6∈ {tn}∞n=1, and x∞(tn) = x
−(tn) for all n ∈ N. Since xn converges 11

to x∞ pointwise on I as n→∞, applying (5.14) we get: 12

d∗w(x∞, 0) ≤ lim infn→∞
d∗w(xn, 0) ≤ λ. 13

2c. Finally, noting that x−(t) = x∞(t) if t 6= a, and x−(a) = x∞(a+ 0), that is, x− and x∞ are different only at the point 14

t = a, we conclude from step 2a that d∗w(x
−, 0) ≤ d∗w(x∞, 0) ≤ λ. � 15

Lemma 6.13 ([22, Theorem 1 and Corollary 2]). Let (N,+) be an Abelian semigroup with zero and division by 2 and (M, d,+, ·) 16

be a complete abstract convex cone. Then the operator T : N → M satisfies the Jensen functional equation 17

2 T
(y+ z
2

)
= Ty+ Tz in M for all y, z ∈ N 18

if and only if there exist a unique additive operator A ∈ Add(N;M) and an element h0 ∈ M such that Ty = Ay+ h0 in M for all 19

y ∈ N. 20

Note that particular cases of this lemma whenM is the family of all nonempty compact convex subsets of a real normed 21

space equipped with the Hausdorff metric [44] were established in [45, Theorem 2] for N = [0,∞) and [46, Theorem 5.6] 22

for a convex cone N in a normed space. 23

Theorem 6.14. Let (N, d,+, ·) and (M, d,+, ·) be two abstract convex cones, where M is complete, h : I × N → M be the 24

generator of the superposition operator H and Φ = {ϕi}∞i=1 be a convex Φ-sequence. If the operator H maps BVΦ(I;N) into 25

BVΦ(I;M) and is Lipschitzian, then the family of functions {h(t, ·)}t∈I ⊂ Lip(N;M) is uniformly Lipschizian, and there exist two 26

functions x : I → L(N;M) and h0 : I → M such that x(·)y, h0 ∈ BV−Φ(I;M) for all y ∈ N, and Matkowski’s representation 27

holds: 28

h−(t, y) = x(t)y+ h0(t) for all t ∈ I and y ∈ N, (6.18) 29

where x(·)y : I → M is given by t 7→ x(t)y, and h−(t, y) is the left regularization of the function s 7→ h(s, y) at the point s = t 30

for each fixed y ∈ N. 31

Proof. For the sake of clarity we divide the proof into four steps. 32

1. Common part. SinceH is Lipschitzian, then there exists a constant η ≥ 0 such that dM(Hy,Hz) ≤ η dN(y, z) for all 33

y, z ∈ BVΦ(I;N). If η = 0, then Hy = Hz, and so, if we define functions y and z to be constants y(t) = y and z(t) = z, 34

t ∈ I , where y, z ∈ N , then, by the definition ofH , we find h(t, y) = h(t, z) for all t ∈ I and y, z ∈ N . Thus, the function h 35

does not depend on the second variable, and so, if we set h0(t) = h−(t) for t ∈ I , then we obtain the representation (6.18) 36

with x = 0 : I → L(N;M). 37

In what follows we assume that η > 0. SinceH is Lipschitzian, the definition of dM (cf. (5.8)) implies, in particular, the 38

inequality d∗w(Hy,Hz) ≤ η dN(y, z) for all y, z ∈ BVΦ(I;N). Setting λ = η dN(y, z) > 0 for y 6= z, by virtue of (5.6) and [1, 39

Theorem 3.8(d)], this inequality can be equivalently rewritten as wdλ(Hy,Hz) ≤ 1. It follows from the definition of w and 40

H that, given n ∈ N and a ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ b, we have: 41

n∑
i=1

ϕσ(i)

(
d
(
h(bi, y(bi))+ h(ai, z(ai)), h(bi, z(bi))+ h(ai, y(ai))

)
η dN(y, z)

)
≤ 1 (6.19) 42

for any permutation σ : {1, . . . , n} → {1, . . . , n}. 43
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Given α, β ∈ R, α < β , consider auxiliary functions ζα,β ∈ Lip(R; [0, 1]) given by1

ζα,β(t) =

{ 0 if t ≤ α,
(t − α)/(β − α) if α ≤ t ≤ β,
1 if t ≥ β.

2

2. Let us show that {h(t, ·)}t∈I ⊂ MN is a uniformly Lipschitzian family. In this stepM can be any metric semigroup. Let3

y, z ∈ N be arbitrary elements, y 6= z. First, we assume that a < t ≤ b. In the inequality (6.19) we set n = 1, a1 = a, b1 = t ,4

y(s) = ζa,t(s)y and z(s) = ζa,t(s)z for all s ∈ I , so that y(a) = z(a) = 0, y(t) = y and z(t) = z. By virtue of [1, equality (3.6)],5

given s, r ∈ I , we have:6

d(y(s)+ z(r), z(s)+ y(r)) = |ζa,t(s)− ζa,t(r)| d(y, z),7

and so, from the definition ofwd from Section 5.2 and Lemma 6.9, for λ > 0, we find8

wdλ(y, z) = wλ
(
d(y, z)ζa,t(·)

)
= ϕ1(d(y, z)/λ) = 19

if and only if λ = d(y, z)/ϕ−11 (1). It follows from [1, Theorem 3.8(b)] that d
∗
w(y, z) = d(y, z)/ϕ

−1
1 (1). Since dN(y, z) =10

d∗w(y, z), (6.19) implies11

ϕ1

(
d
(
h(t, y(t))+ h(a, 0), h(t, z(t))+ h(a, 0)

)
η (d(y, z)/ϕ−11 (1))

)
≤ 1,12

whence13

d(h(t, y), h(t, z)) ≤ η d(y, z) for all y, z ∈ N.14

Now, let t = a. In the inequality (6.19) we set n = 1, a1 = a, b1 = b, y(s) = (1− ζa,b(s))y and z(s) = (1− ζa,b(s))z for all15

s ∈ I , so that y(a) = y, z(a) = z and y(b) = z(b) = 0. Also, we get, as above, d∗w(y, z) = d(y, z)/ϕ
−1
1 (1), and so,16

dN(y, z) = d(y(a), z(a))+ d∗w(y, z) =
(
1+

1

ϕ−11 (1)

)
d(y, z).17

It follows from (6.19) that18

ϕ1

(
d
(
h(b, 0)+ h(a, z), h(b, 0)+ h(a, y)

)
η (1+ ϕ−11 (1))(d(y, z)/ϕ

−1
1 (1))

)
≤ 1,19

and so,20

d(h(a, z), h(a, y)) ≤ η (1+ ϕ−11 (1))d(y, z) for all y, z ∈ N.21

By the definition of h− and Lemma 6.10, we also get22

d(h−(t, y), h−(t, z)) ≤ η (1+ ϕ−11 (1))d(y, z), t ∈ I, y, z ∈ N. (6.20)23

3. Now we establish the representation (6.18). First, suppose that a < t ≤ b, n ∈ N and a < a1 < b1 < a2 < b2 < · · · <24

an < bn < t . Define the function ζn ∈ Lip(I; [0, 1]) as follows:25

ζn(s) =


0 if a ≤ s ≤ a1,
ζai,bi(s) if ai ≤ s ≤ bi, i = 1, . . . , n,
1− ζbi,ai+1(s) if bi ≤ s ≤ ai+1, i = 1, . . . , n− 1,
1 if bn ≤ s ≤ b.

26

Also, given y, z ∈ N , y 6= z, define two functions y, z : I → N by27

y(s) =
1
2
(1+ ζn(s))y+

1
2
(1− ζn(s))z, s ∈ I,28

z(s) =
1
2
ζn(s)y+

1
2
(2− ζn(s))z, s ∈ I.29

Then y, z ∈ BVΦ(I;N). In fact, by the translation invariance and homogeneity of d and [1, equality (3.6)], given s, r ∈ I , we30

have:31

d(y(s), y(r)) = d(z(s), z(r)) ≤
d(y, 0)+ d(z, 0)

2
|ζn(s)− ζn(r)|,32
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and so, by virtue of (5.1), 1

wdλ(y, 0) and wdλ(z, 0) ≤
2n+1∑
i=1

ϕi

(d(y, 0)+ d(z, 0)
2λ

)
<∞, λ > 0. 2

Noting that d(y(s)+ z(r), z(s)+ y(r)) = 0 for all s, r ∈ I , we findwdλ(y, z) = 0 for all λ > 0, implying d
∗
w(y, z) = 0, and so, 3

dN(y, z) = d(y(a), z(a))+ d∗w(y, z) = d(y, z)/2. 4

Note also that y(bi) = y, z(bi) = (y+ z)/2, y(ai) = (y+ z)/2 and z(ai) = z. Consequently, inequality (6.19) yields 5

n∑
i=1

ϕσ(i)

(
d
(
h(bi, y)+ h(ai, z), h(bi, (y+ z)/2)+ h(ai, (y+ z)/2)

)
η (d(y, z)/2)

)
≤ 1. (6.21) 6

Since constant functions from I into N lie in BVΦ(I;N) and the operatorH maps BVΦ(I;N) into BVΦ(I;M), then h(·, u) = 7

Hu ∈ BVΦ(I;M) for all u ∈ N , and so, by Lemma 6.12, h−(·, u) ∈ BV−Φ(I;M) for all u ∈ N . Taking into account the 8

completeness ofM , the definition of the left regularization h−(·, u), the continuity of the operation of addition+ inM and 9

the continuity of functions ϕi and passing to the limit as a1 → t − 0 in (6.21), we find 10

n∑
i=1

ϕσ(i)

(
d
(
h−(t, y)+ h−(t, z), h−(t, (y+ z)/2)+ h−(t, (y+ z)/2)

)
η (d(y, z)/2)

)
≤ 1. 11

Due to the arbitrariness of n, it follows from (5.2) that 12

d
(
h−(t, y)+ h−(t, z), h−

(
t,
y+ z
2

)
+ h−

(
t,
y+ z
2

))
= 0 13

for all t ∈ (a, b]. By the definition of h−(a, u), the last equality holds also at the point t = a. Since d is a metric onM andM 14

is an abstract convex cone, the last inequality implies 15

h−(t, y)+ h−(t, z) = h−
(
t,
y+ z
2

)
+ h−

(
t,
y+ z
2

)
= 2h−

(
t,
y+ z
2

)
. 16

Thus, for each t ∈ I , the operator h−(t, ·) : N → M satisfies the following Jensen functional equation: 17

2h−
(
t,
y+ z
2

)
= h−(t, y)+ h−(t, z) for all y, z ∈ N. 18

By Lemma 6.13, for each t ∈ I there exist an additive operator x(t) : N → M (so that x(t)(y + z) = x(t)y + x(t)z for all 19

y, z ∈ N) and an element h0(t) ∈ M such that the equality in (6.18) holds for all y ∈ N . Since x(t)(0) = 0, then it follows 20

from (6.18) that h0(t) = h−(t, 0) for all t ∈ I , and so, the function h0 lies in BV−Φ(I;M). Equality (6.18) and inequality (6.20) 21

imply that if y, z ∈ N and t ∈ I , then 22

d(x(t)y, x(t)z) = d(x(t)y+ h0(t), x(t)z + h0(t)) 23

= d(h−(t, y), h−(t, z)) 24

≤ η (1+ ϕ−11 (1))d(y, z), 25

whence x(t) ∈ L(N;M), and so, x : I → L(N;M). 26

4. It remains to show that x(·)y ∈ BV−Φ(I;M) for all y ∈ N . Applying [1, inequality (2.3)] and (6.18), given t, s ∈ I , we 27

have: 28

d(x(t)y, x(s)y) ≤ d(x(t)y+ h0(t), x(s)y+ h0(s))+ d(h0(t), h0(s)) 29

= d(h−(t, y), h−(s, y))+ d(h0(t), h0(s)). (6.22) 30

Noting that h−(·, y), h0 ∈ BV−Φ(I;M), we set λ = d
∗
w(h
−(·, y), 0) and µ = d∗w(h0, 0) and with no loss of generality assume 31

that λ · µ 6= 0. Since, by (6.22), we have 32

d(x(t)y, x(s)y)
λ+ µ

≤
λ

λ+ µ
·
d(h−(t, y), h−(s, y))

λ
+

µ

λ+ µ
·
d(h0(t), h0(s))

µ
, 33

then, by virtue of the convexity of functions ϕi, (5.6) and Theorem 3.8(c) from [1], we find 34

wdλ+µ(x(·)y, 0) ≤
λ

λ+ µ
wdλ(h

−(·, y), 0)+
µ

λ+ µ
wdµ(h0, 0) ≤ 1. 35

Therefore, x(·)y ∈ BVΦ(I;M) and d∗w(x(·)y, 0) ≤ λ + µ for all y ∈ N . The continuity from the left of x(·)y on (a, b] is a 36

consequence of inequality (6.22): in fact, given a < t ≤ b, we pass to the limit as s → t − 0 in (6.22) and note that both 37

terms at the right hand side of (6.22) tend to zero. We conclude that x(·)y ∈ BV−Φ(I;M) for all y ∈ N . � 38
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6.15. Remarks1

(a) Theorem 6.14 contains as particular cases the results of [16, Theorem 5.5], [10, Theorem 7], [18, Theorem 4],2

[12, Theorem 2], [5, Theorem 1] and [24, Theorem 1]. The representation of the form h−(t, y) = x(t)y + h0(t) for the3

generators of Lipschitzian superposition operators were found by Matkowski [6,7] in the space of Lipschitz functions on I4

and Lipschitz maps on a normed space and by Matkowski and Miś [5] in the case when N = M = R and ϕi(u) = u for5

all i ∈ N. The idea to apply the Jensen functional equation in the space of Lipschitzian operators goes back to the papers6

of A. and W. Smajdor [21,22]. Theorem 6.14 remains true if we replace the left regularization of the function t 7→ h(t, y)7

by its right regularization. However, the regularization h−(t, y) in that theorem cannot be replaced simply by h(t, y)—the8

corresponding example in the case when N = M = R and ϕi(u) = uwas constructed in [5, p. 157].9

(b) Let B(I;N) ⊂ BVΦ(I;N) be the set of all functions satisfying the condition: given y, z ∈ N , n ∈ N and a < a1 <10

b1 < · · · < an < bn < b, the function I 3 s 7→ ζn(s)y + z ∈ N belongs to B(I;N), where ζn is defined in the proof of11

Theorem 6.14. Let us endow the setB(I;N) with metric dN from BVΦ(I;N). Then the conclusion of Theorem 6.14 remains12

true if we replace the conditionH ∈ Lip
(
BVΦ(I;N); BVΦ(I;M)

)
in it by the conditionH ∈ Lip

(
B(I;N); BVΦ(I;M)

)
.13

(c) The next remark (d) is interesting in connection with generalizations of the Banach Contraction Theorem. Let (X, d)14

be a complete metric space, η : R+ → R+ be a function and T : X → X be an operator such that d(Tx, Ty) ≤ η (d(x, y))15

for all x, y ∈ X . Then T admits a unique fixed point x∗ ∈ X such that Tx∗ = x∗ and limn→∞ d(T nx, x∗) = 0 for all x ∈ X ,16

where T n designates the n-th iteration of the operator T , provided at least one of the following three conditions hold: (1) η is17

nondecreasing, continuous from the right on R+ and η(u) < u for all u > 0 [47, Theorem 1]; (2) η is upper semicontinuous18

from the right on R+ and η(u) < u for all u > 0 [48]; (3) η is nondecreasing on R+ and ηn(u)→ 0 as n→∞ for all u > 0,19

where ηn is the n-th iteration of η ([49, Theorem 1.2]). For more information on the equivalence of conditions (1), (2) and20

(3) we refer to [50, Theorem 1].21

(d) Suppose that, under the assumptions of Theorem 6.14, the function η : R+ → R+ is such that η(0) = 0 and η(u) > 022

for all u > 0, and the superposition operatorH maps BVΦ(I;N) into BVΦ(I;M) and satisfies the condition:23

dM(Hy,Hz) ≤ η (dN(y, z)) for all y, z ∈ BVΦ(I;N).24

Then (cf. step 2 in the proof of Theorem 6.14), given t ∈ I and y, z ∈ N , if α = ϕ−11 (1), β = 1/α and γ = 1+ (1/α), then25

d(h(t, y), h(t, z)) ≤ αmax{η(βd(y, z)), η(γ d(y, z))} ≡ η∗(d(y, z))26

and a similar estimate holds also for h− in place of h, and there exist functions x : I → Add(N;M) and h0 : I → M , for27

which x(·)y, h0 ∈ BV−Φ(I;M) for all y ∈ N , such that the representation (6.18) holds. If η is continuous (or bounded), then,28

for each t ∈ I , the operator x(t) : N → M is continuous (bounded, respectively) as well: by virtue of (6.18), we have29

d(x(t)y, x(t)z) = d(h−(t, y), h−(t, z)) ≤ η∗(d(y, z)), y, z ∈ N.30

Moreover, if lim infu→∞ η(u)/u = 0, then x = 0 in the representation (6.18), so that h−(t, y) = h0(t) for all t ∈ I and y ∈ N:31

in fact, the additivity property of x(t), for each rational number λ > 0, implies (cf. Section 5.5(e))32

λd(x(t)y, 0) = d(λx(t)y, 0) = d(x(t)(λy), x(t)(0)) ≤ η∗(λd(y, 0)),33

whence x(t)y = 0 for all y ∈ N , and so, x(t) = 0 for all t ∈ I .34

Replacing N by L(N;M) in Theorem 6.14, we get the following theorem, which is partially converse to Theorem 6.8.35

Theorem 6.16. Let (N, d,+, ·) and (M, d,+, ·) be two abstract convex cones, where M is complete, g : I × L(N;M)→ M be36

the generator of the superposition operator G : L(N;M)I → M I and Φ be a convex Φ-sequence. If G maps BVΦ(I; L(N;M))37

into BVΦ(I;M) and is Lipschitzian, then there exist two functions Y : I → L(L(N;M);M) and h0 : I → M, for which38

Y (·)x, h0 ∈ BV−Φ(I;M) for all x ∈ L(N;M), such that g
−(t, x) = Y (t)x + h0(t) for all t ∈ I and x ∈ L(N;M), where39

Y (·)x : I → M is given by t 7→ Y (t)x and g−(t, x) is the left regularization of the function s 7→ g(s, x) at the point s = t for40

each fixed x ∈ L(N;M).41
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