В диссертационный совет по инженерным наукам и прикладной математике НИУ ВШЭ

ОТЗЫВ ЧЛЕНА КОМИТЕТА
на диссертацию Засыпко Вероники Владимировны
по теме «Разработка численно-аналитического метода и алгоритма решения задач оптимального управления (на примере трехсекторной инвестиционной экономической модели)», представленную на соискание ученой степени кандидата наук по прикладной математике НИУ ВШЭ

Актуальность темы диссертационного исследования

Диссертационная работа В.В. Засыпко посвящена исследованию задач оптимального управления с непрерывным временем, заданных на конечном интервале. Целевой функционал в таких задачах обычно является смешанным, то есть состоит из интегральной и терминальной частей. Основным ограничением является так называемая дифференциальная связь, представляющая собой систему дифференциальных уравнений, которые описывают изменение состояния системы под воздействием управления. Такого рода задачи известны в математической экономике. Аналогичные по форме задачи возникают и в теории автоматического управления различными техническими системами. Теоретической основой для решения многих из этих задач является принцип максимума Понтрягина.

Необходимо отметить, что метод, основанный на использовании принципа максимума, достаточно редко позволяет получить аналитические решения задач оптимального управления. Непосредственное применение этого метода связано с необходимостью решения нескольких взаимосвязанных систем соотношений, состоящих из необходимых условий экстремума и ограничений исходной задачи. Получить аналитические решения такой сложной системы чаще всего невозможно. В связи с этим возникает необходимость разработки новых численно-аналитических и численных методов, позволяющих анализировать упомянутые системы соотношений, находить допустимые экстремали и оптимальные управляемые процессы. В диссертационной работе В.В. Засыпко разработан и реализован один из возможных подходов к численному решению задач оптимального управления.

Содержание работы и научная новизна основных результатов, полученных в диссертации
Приведем краткую характеристику основных результатов диссертации.

1. Разработан новый численно-аналитический метод решения задачи оптимального управления. Изложение этого метода для классической задачи оптимального управления с фиксированным временем и закрепленным левым концом траектории приведено в главе 2. Данный метод позволяет провести анализ системы соотношений, состоящей из необходимых условий и ограничений исходной задачи, и численно определить допустимые экстремали. Метод может быть реализован для конечного класса функций управления заданной структуры. В качестве такого класса можно рассмотреть множество кусочно-постоянных функций, принимающих конечное число значений и имеющих не более заданного конечного числа скачков (переключений управления).

2. Обоснована и поставлена новая содержательная математическая задача оптимального управления в рамках динамической модели трехсекторной экономики. Общая структура рассматриваемой задачи соответствует описанной выше структуре задачи оптимального управления. Состоянием системы является трехмерная функция удельного капитала (фондовооруженности) в трех секторах, управление представляет собой долю суммарных инвестиций, направляемую в фондосоздающий сектор, производящий средства производства. Целевой функционал задачи (показатель качества управления) включает в себя интегральную часть (накопленное удельное потребление) и терминальную часть, зависящую от значений функций удельного капитала в конечный момент времени. Динамика модели описывается системой из трех дифференциальных уравнений относительно функций состояний, в этих уравнениях присутствует зависимость от функции управления.

На основе известных результатов теории управления (принцип максимума) в работе получено утверждение о системе необходимых условий в поставленной задаче оптимального управления (глава 3).

3. Проведено аналитическое исследование системы, состоящей из необходимых условий и ограничений поставленной задачи оптимального управления. Получены явные аналитические представления для функций состояний и сопряженных переменных для класса функций управления, структура которых определяется на основе принципа максимума. По форме такие функции являются кусочно-постоянными, принимающими два возможных значения: 0 или 1, и имеющими заданное конечное число точек разрыва (переключения управления). Все эти результаты также включены в главу 3.
4. Построен алгоритм, позволяющий найти управляемые процессы, которые представляют собой допустимые экстремали в исследуемой задаче оптимального управления. Этот алгоритм основан на методе, изложенном в главе 2. Он может быть реализован для класса функций управления описанной выше структуры, имеющих не более заданного конечного числа точек переключения.

Особо отметим, что данный алгоритм применим для исследования достаточно сложных задач оптимального управления и, в частности, таких, в которых сопряженные уравнения могут зависеть от функций состояний исследуемой управляемой системы (глава 4).

5. Разработана программа, реализующая указанный алгоритм. Данная программа позволяет для заданного набора входных параметров модели определить числовые и графические представления управляемых процессов, являющихся допустимыми экстремалиами в исходной задаче оптимального управления (глава 4).

Все основные результаты диссертационной работы, описанные выше в пунктах 1-5 характеристики её содержания, являются новыми.

Обоснованность научных положений и выводов, сформулированных в диссертации

Все теоретические результаты аналитического характера, приведенные в диссертации, доказаны при помощи математических методов теории оптимального управления и теории дифференциальных уравнений. Результаты алгоритмического характера обоснованы при помощи метода логического вывода.

Теоретическая и практическая значимость работы

Диссертационная работа в целом представляет собой законченное научное исследование, в котором разработан новый оригинальный подход к решению численного исследования задач оптимального управления. Данный подход реализован на примере исследования конкретной задачи управления в динамической модели трехсекторной экономики. Такой подход открывает перспективы новых исследований, которые могут развивать и углублять результаты диссертации. Этим и определяется теоретическое значение проведенного исследования.

Замечания по диссертационной работе.

1. В работе практически не исследован вопрос о точности полученных численных решений и, в частности, о влиянии на эти решения числа точек переключений управления.
2. В работе недостаточно раскрыты возможности программы, реализующей предложенный метод и алгоритм. Следовало бы продемонстрировать эти возможности на большем числе примеров и вариантов рассматриваемой задачи оптимального управления.

3. В обзорной части работы следовало бы более широко представить результаты современных исследований в области численных методов решения задач оптимального управления.

Указанные недостатки не влияют на общую положительную оценку проведенного исследования.

Диссертационная работа Засыпко В.В. «Разработка численно-аналитического метода и алгоритма решения задачи оптимального управления (на примере трехсекторной инвестиционной экономической модели)» удовлетворяет всем требованиям Положения о присуждении ученых степеней Национального исследовательского университета «Высшая школа экономики», предъявляемым к кандидатским диссертациям, а ее автор, Засыпко Вероника Владимировна, заслуживает присуждения ей ученой степени кандидата наук по прикладной математике НИУ ВШЭ.

Главный научный сотрудник Института проблем управления РАН, доктор технических наук, профессор

Лотоцкий Владимир Алексеевич

e-mail: valot@yandex.ru
tel.: 8(915)343-70-09

Подпись Лотоцкого В.А.