• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2017/2018

Алгебра и геометрия

Язык: русский
Кредиты: 5

Программа дисциплины

Аннотация

Настоящая дисциплина относится к базовой части математического и естественно-научного цикла дисциплин. Основные положения дисциплины должны быть использованы в дальнейшем приизучении следующих дисциплин: «Дискретная математика», «Математическая логика»,«Теория вероятностей и математическая статистика», «Электротехника и электроника»,«Теория электрических цепей», «Общая теория связи», «Цифровая обработка сигналов»,«Методы машинного обучения»
Цель освоения дисциплины

Цель освоения дисциплины

  • Знакомство с основными понятиями и методами линейной алгебры и аналитической геометрии как основы значительнойчасти математического аппарата дифференциальных уравнений, функционального анализа,теории вероятностей, математической статистики и других дисциплин.
Результаты освоения дисциплины

Результаты освоения дисциплины

  • Умение определять ядро, образ и ранг линейного оператора, заданного в некотором базисе матрицей. Умение вычислять собственные значения и собственные векторы линейных операторов. Уметь преобразовывать базис и линейный оператор с помощью линейных преобразований. Умение приводить квадратичные формы к каноническому виду.
  • Умение составлять уравнения прямых и плоскостей в пространстве и определять и точку пересечения и угол между ними. Уметь находить расстояние между плоскостями, между заданными точкой и плоскостью, угол и расстояние между двумя прямыми в пространстве, уравнение линии пересечения плоскостей.
  • Умение решать задачи на поиск точек пересечений прямых, а также вычислять углы между прямыми на плоскости. Умение использовать при решении задач условия параллельности и перпендикулярности прямых.
  • Умение вычислять скалярное и векторное произведения в декартовой системе координат. Умение вычислять площади треугольников и объемы пирами с использованием векторного и смешанного произведений.
  • Умение приводить уравнение кривой второго порядка к каноническому виду с помощью преобразования поворота декартовой системы координат.
  • Владение алгеброй комплексных чисел: сложение, умножение на число и деление. Умение переходить от алгебраической формф комплексного числа к тригонометрической форме. Умение возводить комплексное число в степень и извлекать из него корень.
  • Владение алгеброй квадратных матриц: сложение матриц, умножение матрицы на число, умножение матриц и нахождение обратной матрицы. Умение решать систему n линейных уравнений c n неизвестными методами Крамера и Гаусса. Умение вычислять определители матриц с использованием их основных свойств.
  • Умение привести матрицу к ступенчатому виду и вычислить ранг матрицы. Умение определять совместность системы линейных уравнений с помощью теоремы Кронекера-Капелли. Умение решать системы линейных уравнений методом Гаусса.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основы векторной алгебры. Векторы на плоскости и в пространстве. Скалярное произведение векторов. Вычисление площадей и углов. Векторное и смешанное произведения. Объемы, площади и двугранные углы.
    Векторы на плоскости и в пространстве. Скалярное произведение векторов. Вычисление площадей и углов. Векторное и смешанное произведения. Объемы, площади и двугранные углы.
  • Прямые на плоскости. Различные виды уравнений прямых на плоскости.
    Прямые на плоскости. Различные виды уравнений прямых на плоскости.
  • Прямые и плоскости в пространстве. Виды уравнений прямой и плоскости в пространстве.
  • Кривые второго порядка. Канонические уравнения. Распознавание типа кривой по уравнению общего вида. Методы приведения кривой второго порядка к каноническому виду. Понятие о поверхностях второго порядка.
  • Комплексные числа. Алгебраическая и тригонометрическая формы. Геометрическая интерпретация. Алгебра комплексных чисел. Возведение в степень и извлечение корней из комплексных чисел.
  • Матрицы. Умножение матриц. Обратные матрицы. Определители. Решение систем n линейных уравнений c n неизвестными методами Крамера и Гаусса.
  • Ранг матрицы. Теорема о базисном миноре. Элементарные преобразования не изменяющие ранга матрицы. Ступенчатый вид и ранг матрицы. Системы m линейных уравнений с n неизвестными. Теорема Кронекера-Капелли. Решение системы линейных уравнений методом Гаусса.
  • Линейные пространства. Понятие базиса. Линейные операторы и их матрицы. Ядро, образ и ранг линейного оператора. Собственные значения и собственные векторы линейных операторов. Квадратичные формы. Приведение квадратичной формы к каноническому виду методом Лагранжа и методом ортогонального преобразования.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 1
    Накопленная оценка промежуточного (итогового) контроля округляется в меньшую сторону, если дробная часть меньше половины, и в большую -- в противном случае.
  • неблокирующий Контрольная работа 2
    Накопленная оценка промежуточного (итогового) контроля округляется в меньшую сторону, если дробная часть меньше половины, и в большую -- в противном случае.
  • неблокирующий Экзамен
    На пересдаче студенту не предоставляется возможность получить дополнительный балл для компенсации оценки за текущий контроль.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (4 модуль)
    0.25 * Контрольная работа 1 + 0.25 * Контрольная работа 2 + 0.5 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • - Ильин В.А., Позняк Э.Г. — Аналитическая геометрия - Издательство "Физматлит" - 2009 - ISBN: 978-5-9221-0511-8 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/2179
  • - Ильин В.А., Позняк Э.Г. — Линейная алгебра. - Издательство "Физматлит" - 2007 - ISBN: 978-5-9221-0481-4 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/2178
  • Сборник задач по аналитической геометрии, Клетеник Д. В., Ефимова Н. В., 2003