• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2017/2018

Математический анализ

Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Экономика)
Направление: 38.03.01. Экономика
Когда читается: 1-й курс, 1-4 модуль
Формат изучения: Full time
Язык: русский
Кредиты: 14

Программа дисциплины

Аннотация

В результате освоения учебной дисциплины «Математический анализ» студенты должны владеть следующими знаниями, умениями и навыками:  знать основы математического анализа, необходимые для дальнейшего изучения других дисциплин, предусмотренных учебным планом;  уметь применять методы дисциплины для решения задач, возникающих в других дисциплинах;  владеть навыками применения современного инструментария дисциплины
Цель освоения дисциплины

Цель освоения дисциплины

  • приобретение студентами базовых знаний по математическому анализу;
  •  формирование навыков работы с абстрактными понятиями высшей математики;
  •  знакомство с прикладными задачами дисциплины;
  •  формирование умения решать типовые задачи дисциплины.
Результаты освоения дисциплины

Результаты освоения дисциплины

  • Определяет сходимость числовой последовательности, вычисляет предел числовой последовательности, понимает экономический смысл числа «е»,
  • Определяет свойства функций одной переменной, Умеет вычислять предел функции, знает первый и второй замечательные приделы Знает правила дифференцирования, исследует функцию с использованием производной, строит график функции, производная сложной функции, Знает логарифмическое дифференцирование…
  • Знает понятие n- мерного пространства, Вычисляет предел функции n-переменных, Находит частные производные явно и неявно заданных функций, Понимает смысл частных производных, производной по направлению, градиент, Находит уравнение касательной плоскости, уравнения нормали, дифференциал высших порядков, Умеет исследовать функцию нескольких переменных на условный и безусловный экстремум.
  • Знает понятие неопределенного и определенного интегралов, знает методы интегрирования, Вычисляет с помощью интеграла площадь плоской фигуры, объем тела, длину дуги кривой, Исследует на сходимость несобственные интегралы, Знает геометрический смысл и свойства двойного интеграла. Сводит двойной интеграл к повторному. Заменяет переменную в двойном интеграле. Вычисляет двойной интеграл в полярной системе координат.
  • Находит частичные суммы ряда, Знает понятие сходящегося числового ряда, свойства сходящихся рядов: необходимое условие сходимости ряда, критерий Коши сходимости ряда. достаточные признаки сходимости положительных числовых рядов, Знакочередующиеся ряды. Признак Лейбница. Определяет абсолютную, условную сходимость Знает понятия функционального ряда, находит область и радиус сходимости степенного ряда.
  • Знает понятие дифференциального уравнения, классифицирует дифференциальные уравнения по типу,решает дифференциальные уравнения первого прядка Знает дифференциальные уравнения второго порядка с постоянными коэффициентами однородные и неоднородные, находит частное решение по специальному виду правой части,
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение в анализ
    Тема 1. Введение. Элементы теории множеств Предмет математического анализа и его роль в экономической теории. Понятие множества и подмножества. Операции над множествами. Элементы математической логики. Кванторы существования и всеобщности. Множество действительных чисел. Структура множества действительных чисел: натуральный ряд, целые, рациональные, иррациональные числа. Аксиомы действительных чисел, определение действительных чисел. Расширенное множество действительных чисел. Подмножества множества действительных чисел: отрезок, интервал, полуинтервал, окрестность. Ограниченные множества действительных чисел. Понятие наибольшего (наименьшего) элемента числового множества, грани множеств, точные грани множеств. Теорема о существовании точной верхней (нижней) грани. Тема 2. Числовые последовательности Понятие числовой последовательности. Основные способы задания числовых последовательностей. Ограниченные и неограниченные числовые последовательности. Бесконечно малые и бесконечно большие числовые последовательности. Свойства бесконечно малых числовых последовательностей. Определение предела числовой последовательности. Свойства сходящихся числовых последовательностей. Арифметические действия со сходящимися числовыми последовательностями. Монотонные числовые последовательности. Существование предела ограниченной монотонной последовательности. Число «е». Экономический смысл числа «е» и экспоненты. Тема 3. Функции одной переменной Понятие функции. Способы задания функции: аналитический, логический, графический, табличный. Задача интерполяции. Неявно заданная функция. Функции заданные параметрически. Общие свойства функций: область определения, множество значений, четность, периодичность, нули функции, ограниченность, монотонность, наибольшее, наименьшее значение функции на множестве. Операции над функциями. Композиция функций: сумма (разность), произведение, частное двух функций. Суперпозиция двух функций, сложная функция. Понятие обратной функции. Основные свойства взаимно-обратных функций. Необходимое условие существования обратной функции. Классификация функций. Простейшие элементарные функции (графики, основные свойства). Элементарные функции: целые рациональные (линейная, квадратичная функции), дробно-рациональные (дробно-линейная функция), иррациональные, трансцендентные. Свойства и графики степенных функций. Функции в экономическом анализе. Тема 4. Предел функции Предел функции. Определение предела функции на языке  – , на языке последовательностей. Правый, левый предел функции. Предел функции на бесконечности. Различные виды предельного перехода. Понятие бесконечно малых и бесконечно больших функций. Свойства бесконечно малых и бесконечно больших. Ограниченные функции. Монотонные функции. Существование предела монотонной функции. Свойства функций, имеющих предел. Вычисление пределов: пределы основных элементарных функций, предел многочлена, рациональной дроби. Типы неопределенностей. Первый замечательный предел, его следствия. Второй замечательный предел, его следствия. Сравнение бесконечно малых и бесконечно больших в окрестности заданной точки. Функции одного порядка, функции высшего и низшего порядка малости и роста, эквивалентные бесконечно малые, главная часть функции, применение при вычислении пределов. Тема 5. Непрерывность функции Различные определения непрерывности функций в точке. Непрерывность справа (слева). Взаимосвязь понятий. Точки разрыва, их классификация. Свойства функций, непрерывных в точке. Непрерывность функции на множестве. Свойства функций, непрерывных на множестве: теорема Больцано-Коши о прохождении непрерывной функции через любое промежуточное значение, следствие теоремы о прохождении через нуль при смене знаков, теоремы Вейерштрасса об ограниченности непрерывной функции и достижении верхней и нижней грани. Понятие обратной функции. Непрерывность обратной функции. Равномерная непрерывность функции. Связь с понятием непрерывности. Теорема Кантора.
  • Дифференциальное исчисление функции одной независимой переменной
    Тема 6. Производная и дифференциал функции одной переменной Определение производной функции в точке, понятие правой и левой производной, связь понятий. Вычисление производной по определению. Понятие дифференцируемости функции в точке, теорема о необходимом и достаточном условии дифференцируемости, связь свойств дифференцируемости и непрерывности. Дифференциал функции. Геометрический смысл производной и дифференциала. Уравнения касательной и нормали к графику функции. Физический смысл производной. Производная суммы, разности, произведения и частного функций. Производная обратной функции. Производная и дифференциал сложной функции, инвариантность формы первого дифференциала. Производные основных элементарных функций (вывод по определению). Таблица производных. Логарифмическая производная, производная степенно-показательной функции. Производные и дифференциалы высших порядков. Тема 7. Основные теоремы дифференциального исчисления Локальный экстремум функции. Теорема Ферма (необходимое условие локального экстремума). Теорема Ролля (о нуле производной). Теорема Лагранжа, формула конечных приращений. Условие постоянства функции. Теорема Коши, обобщенная формула конечных приращений. Правило Лопиталя, (случай 0/0, случай /). Раскрытие неопределенностей. Тема 8. Исследование функции Возрастание, убывание функции. Признаки монотонности функции на интервале. Достаточное условие возрастания (убывания) функции в точке. Общая схема исследования функции на монотонность. Необходимое условие экстремума. Стационарные точки. Экстремум функции, не дифференцируемой на интервале, критические точки. Достаточные условия экстремума по первой производной, по старшим производным. Общая схема решения задачи на экстремум функции. Направление выпуклости графика функции. Признак направления выпуклости. Точки перегиба. Необходимые и достаточные условия перегиба. Асимптоты графика функции. Общая схема исследования функции и построения графиков.
  • Интегральное исчисление
    Тема 12. Неопределенный интеграл Понятие первообразной и неопределенного интеграла. Основные свойства неопределенного интеграла. Таблицы интегралов. Непосредственное интегрирование. Методы интегрирования: замена переменной, формула интегрирования по частям. Интегрировании рациональных дробей. Интегрирование иррациональных функций. Интегрирование тригонометрических функций. Тема 13. Определенный интеграл и его приложения Задача о площади криволинейной трапеции. Определения интеграла. Интегральная сумма Римана, геометрический смысл интегральной суммы. Понятие интегрируемой функции. Свойства интегрируемых функций и определенного интеграла. Производная определенного интеграла с переменным верхним пределом по этому пределу. Теорема о существовании первообразной. Основная формула интегрального исчисления. Формула замены переменной в определенном интеграле. Формула интегрирования по частям. Приложения определенного интеграла. Интегральная теорема о среднем. Вычисление площади плоской фигуры. Вычисление длины дуги кривой. Вычисление объемов. Приближенное вычисление определенных интегралов: формула прямоугольников, трапеций, Симпсона. Понятие о несобственных интегралах. Определения. Формулы интегрального исчисления для несобственных интегралов. Признаки сходимости: признаки сравнения, критерий Коши, признаки Дирихле и Абеля. Абсолютно и условно сходящиеся интегралы. Тема 14. Двойные интегралы Задача об объеме цилиндрического тела. Определение, геометрический смысл и свойства двойного интеграла. Сведение двойного интеграла к повторному. Замена переменной в двойном интеграле. Двойной интеграл в полярной системе координат. Приложения двойного интеграла.
  • Функции нескольких переменных
    Тема 9. Функции нескольких переменных Понятие n-мерного евклидового пространства (Rn)¬, интерпретация элемента пространства Rn как точки, как вектора. Окрестности точек в Rn. Понятие функции нескольких переменных, основные способы задания. График функции. Множества уровня. Предел функции n переменных. Непрерывность функции. Предел по множеству. Повторные пределы. Свойства пределов функции. Свойства непрерывных функций на множествах: аналоги теорем Вейерштрасса и Больцано–Коши. Тема 10. Дифференцирование функций нескольких переменных Частные производные. Дифференцируемость функций многих переменных. Дифференциал. Геометрический смысл частных производных и дифференциала. Свойства дифференцируемых функций – связь непрерывности и дифференцируемости. Дифференцирование сложной функции, инвариантность формы дифференциала. Неявно заданные функции и отображения. Вычисление производных неявно заданных функций. Уравнения нормали и касательной плоскости к графику функции. Производная по направлению. Градиент, его свойства. Частные производные и дифференциалы высших порядков, теорема о равенстве смешанных производных. Тема 11. Экстремум функции нескольких переменных Понятие локального экстремума функции нескольких переменных. Необходимые и достаточные условия. Случай двух переменных. Условный экстремум. Прямой метод отыскания условного экстремума. Метод неопределенных множителей Лагранжа. Необходимые и достаточные условия относительного экстремума. Задача о нахождении наименьшего и наибольшего значения функции в области. Метод наименьших квадратов. Раздел 4. Интегральное исчисление Тема 12. Неопределенный интеграл Понятие первообразной и неопределенного интеграла. Основные свойства неопределенного интеграла. Таблицы интегралов. Непосредственное интегрирование. Методы интегрирования: замена переменной, формула интегрирования по частям. Интегрировании рациональных дробей. Интегрирование иррациональных функций. Интегрирование тригонометрических функций. Тема 13. Определенный интеграл и его приложения Задача о площади криволинейной трапеции. Определения интеграла. Интегральная сумма Римана, геометрический смысл интегральной суммы. Понятие интегрируемой функции. Свойства интегрируемых функций и определенного интеграла. Производная определенного интеграла с переменным верхним пределом по этому пределу. Теорема о существовании первообразной. Основная формула интегрального исчисления. Формула замены переменной в определенном интеграле. Формула интегрирования по частям. Приложения определенного интеграла. Интегральная теорема о среднем. Вычисление площади плоской фигуры. Вычисление длины дуги кривой. Вычисление объемов. Приближенное вычисление определенных интегралов: формула прямоугольников, трапеций, Симпсона. Понятие о несобственных интегралах. Определения. Формулы интегрального исчисления для несобственных интегралов. Признаки сходимости: признаки сравнения, критерий Коши, признаки Дирихле и Абеля. Абсолютно и условно сходящиеся интегралы. Тема 14. Двойные интегралы Задача об объеме цилиндрического тела. Определение, геометрический смысл и свойства двойного интеграла. Сведение двойного интеграла к повторному. Замена переменной в двойном интеграле. Двойной интеграл в полярной системе координат. Приложения двойного интеграла.
  • Ряды
    Тема 15. Числовые ряды Определение числового ряда. Частичные суммы ряда. Понятие сходящегося числового ряда. Свойства сходящихся рядов: необходимое условие сходимости ряда, линейная комбинация сходящихся рядов, свойства остатка ряда. Критерий Коши сходимости ряда. Достаточные признаки сходимости положительных числовых рядов: интегральный признак Коши-Маклорена, признак Даламбера, радикальный признак Коши, признаки сравнения. Знакочередующиеся ряды. Признак Лейбница. Знакопеременные ряды. Абсолютная, условная сходимость. Сходимость абсолютно сходящегося ряда. Признак Лейбница как признак условной сходимости. Тема 16. Степенные ряды Понятие функционального ряда. Сходящийся, абсолютно сходящийся ряд. Понятие интервала и области сходимости. Степенные ряды. Теорема Абеля. Радиус сходимости. Абсолютная сходимость степенного ряда внутри интервала сходимости. Свойства степенных рядов. Почленное дифференцирование и интегрирование степенного ряда. Разложение функций в степенные ряды, ряд Тейлора и Маклорена. Приближенные вычисления.
  • Обыкновенные дифференциальные уравнения
    Тема 17. Обыкновенные дифференциальные уравнения первого порядка Понятие дифференциального уравнения. Обыкновенные дифференциальные уравнения первого порядка. Задача Коши. Теорема существования. Дифференциальные уравнения с разделяющимися переменными. Однородные дифференциальные уравнения первого порядка. Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли. Задача естественного роста выпуска. Тема 18. Линейные дифференциальные уравнения второго порядка Линейные дифференциальные уравнения второго порядка. Задача Коши. Теорема существования. Фундаментальная система решений. Уравнения, допускающие понижение порядка. Линейные неоднородные дифференциальные уравнения второго порядка. Метод вариации произвольных постоянных. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Решение линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами методом подпора по виду правой части. Задача о рынке с прогнозируемыми ценами.
Элементы контроля

Элементы контроля

  • неблокирующий Created with Sketch. Контрольная работа
  • неблокирующий Created with Sketch. Самостоятельная работа
  • неблокирующий Created with Sketch. Контрольная работа
  • блокирует часть оценки/расчета Created with Sketch. Экзамен
  • неблокирующий Created with Sketch. Контрольная работа
  • неблокирующий Created with Sketch. Контрольная работа
  • неблокирующий Created with Sketch. Самостоятельная работа
  • неблокирующий Created with Sketch. Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.16 * Контрольная работа + 0.16 * Контрольная работа + 0.28 * Самостоятельная работа + 0.4 * Экзамен
  • Промежуточная аттестация (4 модуль)
    0.16 * Контрольная работа + 0.16 * Контрольная работа + 0.28 * Самостоятельная работа + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Высшая математика для экономистов: сборник задач: Учебное пособие/Г.И.Бобрик, Р.К.Гринцевичюс, В.И.Матвеев и др. - М.: НИЦ ИНФРА-М, 2015. - 539 с.: 60x90 1/16. - (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-16-010074-6 - Режим доступа: http://znanium.com/catalog/product/469738
  • Шипачев В. С. ; Под ред. Тихонова А. Н.-ВЫСШАЯ МАТЕМАТИКА. ПОЛНЫЙ КУРС В 2 Т. ТОМ 1 4-е изд., испр. и доп. Учебник для академического бакалавриата-М.:Издательство Юрайт,2019-248-Бакалавр. Академический курс-978-5-534-07889-3, 978-5-534-07890-9: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/vysshaya-matematika-polnyy-kurs-v-2-t-tom-1-434737
  • Шипачев В. С. ; Под ред. Тихонова А. Н.-ВЫСШАЯ МАТЕМАТИКА. ПОЛНЫЙ КУРС В 2 Т. ТОМ 2 4-е изд., испр. и доп. Учебник для академического бакалавриата-М.:Издательство Юрайт,2019-305-Бакалавр. Академический курс-978-5-534-07891-6, 978-5-534-07890-9: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/vysshaya-matematika-polnyy-kurs-v-2-t-tom-2-434738

Рекомендуемая дополнительная литература

  • Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.] ; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М. : ЮНИТИ-ДАНА, 2017. - 479 с. — (Серия «Золотой фонд российских учебников») - ISBN 978-5-238-00991-9. - Текст : электронный. - URL: https://new.znanium.com/catalog/product/1028709
  • Кремер Н. Ш. ; Под ред. Кремера Н.Ш.-ВЫСШАЯ МАТЕМАТИКА ДЛЯ ЭКОНОМИЧЕСКОГО БАКАЛАВРИАТА 5-е изд., пер. и доп. Учебник и практикум-М.:Издательство Юрайт,2014-909-Бакалавр. Академический курс-978-5-9916-3738-1: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/vysshaya-matematika-dlya-ekonomicheskogo-bakalavriata-379996