• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2019/2020

Теория вероятностей и математическая статистика

Статус: Курс обязательный (Социология)
Направление: 39.03.01. Социология
Когда читается: 1-й курс, 4 модуль
Формат изучения: без онлайн-курса
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

Данный предмет включает в себя изучение и практическое освоение ключевых понятий и подходов теории вероятностей, математической статистики и базовых моделей статистического анализа данных в социальных науках, приобретение концептуального понимания специфики работы с количественными данными, понимания типов задач, которые могут быть решены с помощью математико-статистических методов. Курс теории вероятностей и математической статистики представлен в двух частях: первая часть изучается в 4 модуле на I курсе бакалавриата, вторая часть (продолжение) реализуется в 1 модуле на II курсе бакалавриата. В данной учебной программе приводится тематический перечень для второй части курса.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины является изучение основных понятий и подходов теории вероятностей, математической статистики и базовых методов количественного анализа, позволяющих работать с данными в соответствии с концептуальным пониманием их специфики и математической формализацией задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Освоение концептуальных понятий математической статистики, круг задач математико-статистических исследований.
  • Умение решить математические задачи соответствующего профиля: вычисление числовых характеристик выборки, диагностика статистических "выбросов", построение и визуальный анализ графиков.
  • Умение решить математические задачи соответствующего профиля: построение доверительных интервалов для среднего и процентной доли, статистическая и содержательная интерпретация доверительных интервалов.
  • Освоение базовых понятий в проверке статистических гипотез. Умение классифицировать два типа ошибок статистического вывода -- ошибка первого и второго рода. Освоение понятия "статистический уровень значимости".
  • Умение решить математические задачи соответствующего профиля: анализ таблиц сопряженности (визуальный анализ процентных распределений по строкам и столбцам таблицы, критерий хи-квадрат), статистическое "прочтение" стандартизированных остатков в профилях таблицы; работа с разреженными профилями таблицы.
  • Умение решить математические задачи соответствующего профиля: диаграмма рассеяния, визуальный анализ корреляционного поля на графике, вычисление коэффициента линейной корреляции и коэффициентов ранговой (монотонной) корреляции. Содержательная интерпретация коэффициентов.
  • Умение решить математические задачи соответствующего профиля: проверка гипотезы о равенстве среднего определенному числу (константе); проверка гипотезы о равенстве процентной доли определенному числу (константе); проверка гипотезы об отсутствии среднего эффекта воздействия (в случае парных выборок).
  • Умение решить математические задачи соответствующего профиля: проверка гипотезы о равенстве дисперсий; проверка гипотезы о равенстве средних (в случае независимых выборок).
  • Умение решить математические задачи соответствующего профиля: проверка гипотезы в реализации однофакторного дисперсионного анализа.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Данные и переменные. Описательная статистика -- меры центральной тенденции и меры разброса для разных типов шкал, статистические графики и их визуальное "прочтение".
    Шкалы измерений (интервальная, порядковая, категориальная). Распределения и их характеристики. Среднее, медиана, мода, квартили, децили. Дисперсия и стандартное отклонение, квартильный размах, коэффициенты вариации. Несмещенная (исправленная) дисперсия выборки. Диагностика статистических "выбросов". Визуализация данных: гистограммы, коробчатые диаграммы.
  • Введение в математическую статистику. Выборка и генеральная совокупность. Вероятностный отбор.
    Объект и предмет математической статистики. Выборка и генеральная совокупность. Вероятностный отбор. Простая случайная выборка. Ключевые понятия и задачи математической статистики.
  • Доверительные интервалы для среднего и процентной доли, погрешность выборки. Эффекты объема выборки.
    Два вида оценивания: точечное и интервальное. Понятие стандартной ошибки. Доверительные интервалы: для среднего и процентной доли. Уровень доверительной вероятности, его содержательный смысл. Понятие предельной ошибки. Связь точности исследования и объема выборки исследования, его эффект. Стандартная ошибка малой выборки. Распределение Стьюдента. Понятие "число степеней свободы" в математической статистике.
  • Проверка статистических гипотез: Основные понятия, философия проверки, алгоритмы. Статистическая значимость. Ошибки статистического вывода, надежность статистического заключения.
    Введение в проверку статистических гипотез. Базовые понятия: статистическая гипотеза, нулевая гипотеза, альтернативная гипотеза, направленные и ненаправленные альтернативные гипотезы, статистика критерия, фиксированный уровень значимости, минимальный уровень значимости (p-value), критическая область, ошибки 1 и 2 рода, статистический вывод и др. Примеры.
  • Проверка статистических гипотез: Совместное распределение переменных. Таблицы сопряженности. Критерий Хи-квадрат. Анализ стандартизированных остатков.
    Понятие о двумерной частотной таблице и способах отражения в ее виде независимости рассматриваемых признаков. Ожидаемые частоты и наблюдаемые частоты. Логика проверки гипотезы об отсутствии связи между двумя номинальными (или рассматриваемыми как номинальные) признаками на основе критерия Хи-квадрат. Основная модель. Интерпретация остатков. Примеры.
  • Проверка статистических гипотез: Парные коэффициенты корреляции
    Диаграмма рассеяния, её визуальный анализ, работа со статистическими "выбросами". Коэффициент линейной корреляции Пирсона, коэффициенты ранговой корреляции Спирмена и Кендалла. Проверка статистических гипотез о корреляционной независимости. Соотнесение с ограничениями (требованиями) социологических шкал.
  • Проверка статистических гипотез: О равенстве среднего и процентной доли определенному числу (константе), об отсутствии среднего эффекта воздействия (в случае связных/парных выборок).
    Правила и содержательный контекст проверки обозначенных гипотез. Статистические критерии проверки гипотез: t-критерий Стьюдента для одной выборки, z-критерий, t-критерий Стьюдента для парных (связных) выборок. Содержательный характер исследовательских задач. Примеры.
  • Проверка статистических гипотез: О равенстве дисперсий в двух группах, о равенстве средних в случае двух независимых выборок, о равенстве процентных долей в двух группах.
    Правила и содержательный контекст проверки обозначенных гипотез. Статистические критерии проверки гипотез: F-критерий Фишера, t-критерий Стьюдента для двух независимых групп, z-критерий. Содержательный характер исследовательских задач. Примеры.
  • Проверка статистических гипотез: Дисперсионный анализ (ANOVA)
    Дисперсионный анализ в математике. Однофакторный дисперсионный анализ. Основная модель, класс решаемых задач. Понимание причинно- следственной связи при использовании однофакторного дисперсионного анализа (модель). Примеры.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа №1
    Оценка за контрольную работу выставляется в целочисленной 10-балльной шкале, и участвует в расчете итоговой оценки со своим весовым коэффициентом.
  • неблокирующий Контрольная работа №2
    Оценка за контрольную работу выставляется в целочисленной 10-балльной шкале, и участвует в расчете итоговой оценки со своим весовым коэффициентом.
  • неблокирующий Письменный экзамен
    Экзамен проводится в письменной форме. Включает в себя задачи по обеим частям курса -- теории вероятностей (учебный материал IV модуля) и математической статистике (учебный материал I модуля). При выставлении итоговой оценки каждый элемент контроля участвует со своим весовым коэффициентом, при округлении рассчитанной по формуле оценки применяется арифметический принцип. В выставлении итоговой оценки, получаемой студентом в I модуле, участвует также оценка, полученная студентом в IV модуле предшествующего учебного года (с весом 0,2), согласно учебной программе.
  • неблокирующий Оценка за IV модуль
    Эта оценка получена студентом по итогам сессии IV модуля в предшествующем учебном году, она добавляется в расчет итоговой оценки с весом 0,2.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (4 модуль)
    0.15 * Контрольная работа №1 + 0.25 * Контрольная работа №2 + 0.2 * Оценка за IV модуль + 0.4 * Письменный экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Задачник по математической статистике : для студентов социально - гуманитарных и управленческих специальностей, Макаров, А. А., Пашкевич, А. В., 2018
  • Задачник по теории вероятностей для студентов социально - гуманитарных специальностей, Макаров, А. А., Пашкевич, А. В., 2015
  • Математико - статистические модели в социологии : математическая статистика для социологов: учеб. пособие, Толстова, Ю. Н., 2007
  • Математическая статистика для социологов : задачник, Толстова, Ю. Н., Куликова, А. А., 2010
  • Теория вероятностей и математическая статистика для социологов и менеджеров : учебник для вузов, Пашкевич, А. В., Макарова, А. А., 2014

Рекомендуемая дополнительная литература

  • Elementary statistics : a step by step approach, Bluman, A. G., 1995
  • SPSS 19: профессиональный статистический анализ данных, Наследов, А., 2011
  • SPSS: искусство обработки информации : анализ стат. данных и восстановление скрытых закономерностей: пер. с нем., Бююль, А., Цефель, П., 2002
  • Statistical methods for the social sciences, Agresti, A., Finlay, B., 2009
  • Анализ социологических данных : методология, дескриптивная статистика, изучение связей между номинальными признаками : учеб.пособие для вузов, Толстова, Ю. Н., 2000
  • Анализ социологических данных с помощью пакета SPSS : учеб. пособие для вузов, Крыштановский, А. О., 2006
  • Измерение в социологии : учеб. пособие для вузов, Толстова, Ю. Н., 2007
  • Измерение в социологии : учеб. пособие для вузов, Толстова, Ю. Н., 2009
  • Маркетинговые исследования с SPSS : учеб. пособие для вузов, Моосмюллер, Г., Ребик, Н. Н., 2011
  • Маркетинговые исследования с SPSS : учеб. пособие, Моосмюллер Г., Ребик Н.Н., 2013
  • Математические методы психологического исследования : анализ и интерпретация данных: учеб. пособие для вузов, Наследов, А. Д., 2007
  • Теория вероятностей, математическая статистика в примерах, задачах и тестах : учебное пособие для вузов, Сапожников, П. Н., Макаров, А. А., 2016