• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Версия для слабовидящихЛичный кабинет сотрудника ВШЭПоиск
Магистратура 2019/2020

Проектно-исследовательский семинар "Анализ данных в коммуникационных проектах"

Статус: Курс обязательный (Коммуникации, основанные на данных)
Направление: 42.04.01. Реклама и связи с общественностью
Когда читается: 1-й курс, 1-4 модуль
Формат изучения: Full time
Преподаватели: Грызунова Елена Аркадьевна, Егоров Дмитрий Владимирович, Коточигов Константин Львович, Нестер (Нестеренко) Роман Юрьевич, Суворина Татьяна Владимировна, Уваров Максим Викторович
Прогр. обучения: Коммуникации, основанные на данных
Язык: русский
Кредиты: 15

Программа дисциплины

Аннотация

Настоящая дисциплина относится к блоку дисциплин «Практика(и), проектная и(или) научно-исследовательская работа». Для программы «Коммуникации, основанные на данных» данная дисциплина является обязательной. В результате успешного освоения курса студенты будут: • знать принципы работы с данными и способы модификации существующих решений для достижения результатов в области анализа коммуникационной среды; • уметь проводить медиа и аудиторное планирование; представить результат в формате презентации, отчета или интерактивного дэшборда для презентации клиенту; • владеть инструментами измерения и увеличения эффективности коммуникаций; методами анализа данных для изучения аудитории, составления портрета пользователя, оценки эффективности кампаний; статистическим анализом данных с использованием Python; инструментами визуализации данных с использованием Python, BI инструментов, презентаций.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью дисциплины «Проектно-исследовательский семинар «Анализ данных в коммуникационных проектах» является освоение студентами аналитических и управленческих компетенций, необходимых для реализации прикладных коммуникационных проектов, основанных на данных.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знает, как устроен рекламный рынок, и какие игроки его представляют, взаимодействие между участниками.
  • Знает, по каким метрикам бренды (компании) оценивают эффективность медиа и коммуникационных активностей.
  • Знает индикаторы эффективной коммуникации.
  • Знает современные инструменты и подходы, которые помогают рекламодателям увеличить эффективность коммуникации.
  • Знает, какие онлайн данные существуют, как собрать данные, как их использовать.
  • Знает, какие оффлайн данные существуют, как собрать данные, как их использовать.
  • Знает, как связывать разные типы данных.
  • Знает, как получить данные из открытых источников.
  • Знает принципы планирования рекламных активностей бренда.
  • Знает специфику в области обеспечения безопасности данных и существующие юридические ограничения.
  • Понимает специфику омниканальной коммуникации.
  • Имеет представление о современных тенденциях изменения потребительского поведения.
  • Дает определение методам, которые использует в работе с данными, понимает принцип работы и способы модификации для достижения определенных результатов и предлагать новые решения
  • Понимает основные направления современных научных и проектных исследований, знает, какие данные нужны, как их собрать и с помощью чего обработать для проверки гипотезы.
  • Владеет и применяет методы анализа данных для анализа аудитории, составления портрета пользователя
  • Демонстрирует владение статистическим анализом данных с использованием Python.
  • Понимает принципы работы алгоритмов анализа данных, знает отличия от стандартных статистических подходов, понимает, какую модель выбрать для решения конкретной задачи и какие данные для этого необходимо собрать и каким образом собрать их безопасным способом.
  • Понимает и распознает индикаторы эффективной коммуникации, владеет инструментами измерения и увеличения эффективности, способен проводить медиа и аудиторное планирование, провести анализ эффективности текущих каналов и выбрать наиболее подходящие.
  • Способен представить результате в формате презентации, отчета или интерактивного дэшборда для презентации клиенту.
  • Студент выбирает методы, подходы и инструменты для решения поставленных профессиональных задач, исходя из критического анализа существующей бизнеспрактики и обзора релевантных научных исследований.
  • Понимает основные направления современных научных и проектных исследований, знает, какие данные нужны, как их собрать и с помощью чего обработать для проверки гипотезы, предлагает собственные гипотезы и составляет план проекта или научного исследования для решения своих задач.
  • Знает основные этапы методологии; умеет формулировать шаги аналитического проекта в терминах методологии.
  • Понимает основные принципы работы с текстовыми данными; умееет разрабатвать модели машинного обучения, использующие текстовые данные в качестве атрибутов
  • Понимает принципы работы рекомендательных систем; умеет использовать прикладные библиотеки для разработки простых сервисов рекомендаций.
  • Умеет отбирать признаки для предиктивной модели; умеет выделять аномалии в данных
  • Способен объяснить научно-популярным языком принципы работы алгоритма, цели и задачи проекта, донести до клиентов, выступать на конференциях с кейсами.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Экосистема рекламного (digital) рынка и его эволюция.
    Как устроен рекламный рынок, и какие игроки его представляют, взаимодействие между участниками.
  • Тема 2. Индикаторы эффективной коммуникации.
    По каким метрикам бренды (компании) оценивают эффективность медиа и коммуникационных активностей.
  • Тема 3. Инструменты измерения эффективности.
    Обзор современных инструментов измерения эффективности маркетинговых активностей бренда.
  • Тема 4. Инструменты увеличения эффективности.
    Обзор современных инструментов и подходов, которые помогают рекламодателям увеличить эффективность коммуникации.
  • Тема 5. Онлайн данные
    Какие онлайн данные существуют, как собрать данные, как их использовать.
  • Тема 6. Оффлайн данные.
    Какие оффлайн данные существуют, как собрать данные, как их использовать.
  • Тема 7. Онлайн + Оффлайн.
    Как связывают ранее не связанные типы данных. Обзор подходов и методов. Успешные примеры.
  • Тема 8. Смежные источники данных и аналитики
    Мониторинг открытых источников и данные социальных сетей.
  • Тема 9. От медиа планирования к аудиторному планированию.
    Изменение подходов к планированию рекламных активностей бренда.
  • Тема 10. Безопасность данных.
    Безопасность данных, ограничения со стороны государства и влияние мировых рынков.
  • Тема 11. От обезличенной коммуникации к персональной.
    Решение задач кросс-девайс коммуникации и задач омниканальности.
  • Тема 12. Изменение потребительского поведения.
    Как меняется современное потребление, и какие технологии будут актуальны через 5 лет
  • Тема 13. Анализ данных для решения задач рекламодателей.
    Ключевые концепты, основные тренды, AdTech, Data Market, основные проблемы. Обзор инструментов Data science и их применения в маркетинге. Полезные ресурсы.
  • Тема 14. Первичный анализ данных.
    Выгрузка и предобработка данных (GCP, bash), демонстрация основных методов Pandas, первые попытки описания аудитории, статистические сравнения групп пользователей. Демонстрация основных методов matplotlib, seaborn, plotly.
  • Тема 15. Задачи обучения с учителем. Как построить свой Look-a-like.
    Алгоритмы классификации. Деревья решений и метод ближайших соседей. Как строится, работает, параметры и применение в реальных задачах. Линейные модели классификации и регрессии. Random Forest. Оценка эффективности алгоритмов. Построение скоринговых моделей для кук.
  • Тема 16. Обучение без учителя. Поиск групп среди аудитории сайта и построение персональной коммуникации.
    Метод главных компонент и кластеризация. Особенности применения PCA, выбор признаков, методы и метрики качества.
  • Тема 17. Другие прикладные задачи анализа данных.
    Особенности задач, методы построения выводов, на что обратить внимание. Кредитный скоринг, задача оттока и анализ эффективности удержания, анализ результатов АБ теста. Кейсы.
  • Тема 18. Оценка эффективности рекламных кампаний.
    Комплексная оценка метрик, моделирование атрибуции, эвристические и мультиканальные модели, их реализация и оценка эффективности РК.
  • Тема 19. Визуализация и представление результатов.
    Как визуализировать отчет так, чтобы понравилось клиенту. Построение интерактивных дэшбордов. Обзор BI систем. Обзор возможностей визуализации данных в Google Studio и Bime. Практика визуализации данных в Tableau.
  • Тема 20. Критический анализ источников, обзор литературы.
    Поиск и подбор релевантных источников. Критическое чтение. Синтез и анализ. Структура обзора литературы. Экспертное интервью как формат сбора данных об актуальной бизнес-практике.
  • Тема 21. Введение в проектную работу
    Особенности реализации коммуникационных проектов, основанных на данных: бизнес-практика, кейсы. Требования к курсовым проектам и групповой проектной работе. Презентация и обсуждение планов курсовых проектов и групповых проектов.
  • Тема 22. Методология анализа данных CRISP-DM
    Понимание бизнес-задач. Сбор и начальное изучение данных. Подготовка данных. Моделирование. Оценка. Внедрение.
  • Тема 23. Обработка естественного языка и интеллектуальный анализ текста
    Предварительная обработка текстовых данных: токены, N-граммы. Тематическое моделирование. Извлечение информации и кластеризация. Байесовская классификация текстов. Анализ тональности текстов. Глубокое обучение в интеллектуальном анализе текста. Обзор практик применения интеллектуального анализа текстов для прикладных исследований в области рекламы и связей с общественностью (анализ потребительских предпочтений, оценка репутации, мониторинг трендов и др.)
  • Тема 24. Рекомендательные системы.
    Принципы работы рекомендательных систем. Библиотеки машинного обучения для разработки сервисов рекомендаций
  • Тема 25. Подготовка данных для предиктивных моделей.
    Отбор признаков для предиктивной модели. Аномалии в данных.
  • Тема 26. Коммуникационные проекты, основанные на данных.
    Предзащита и обсуждение курсовых проектов.
Элементы контроля

Элементы контроля

  • неблокирующий Околлоквиум – оценка за коллоквиум.
  • неблокирующий Домашнее задание 1
  • неблокирующий Опроект – оценка за мини-проект
  • неблокирующий Ообзор – оценка за обзор источников по теме курсового проекта
    Обзор источников представляется в виде устной презентации.
  • неблокирующий Оплан1 – оценка за презентацию плана индивидуального курсового проекта.
    Студенту необходимо представить план курсовой работы - индивидуального курсового проекта в форме мультимедийной презентации и устного выступления с последующими ответами на вопросы преподавателя и других студентов.Содержание презентации должно включать в себя:  техническое задание, цели и задачи проекта;  краткий обзор актуальных практик, анализ рынка, ситуационный анализ;  подробное описание этапов работы над проектом.
  • неблокирующий Оплан2 – оценка за презентацию плана группового проекта.
    Проектной группе необходимо представить план группового проекта в форме мультимедийной презентации и устного выступления с последующими ответами на вопросы преподавателя и других студентов. Презентация должна включать в себя описание бизнес-задачи и её решения с помощью методов анализа данных. Оценка – общая для проектной группы.
  • неблокирующий Опредзащита – оценка за предзащиту курсового проекта
    Студенту необходимо представить презентацию результатов курсового проекта. Выступление на 10 минут, презентация от 10 слайдов, а также ответить на вопросы преподавателя по курсовому проекту.
  • неблокирующий Домашнее задание 2
  • неблокирующий Домашнее задание 3
  • неблокирующий Домашнее задание 4
  • неблокирующий Домашнее задание 5
  • неблокирующий Домашнее задание 6
  • неблокирующий Домашнее задание 7
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (4 модуль)
    0.1 * Домашнее задание 1 + 0.1 * Домашнее задание 2 + 0.1 * Домашнее задание 3 + 0.05 * Домашнее задание 4 + 0.05 * Домашнее задание 5 + 0.05 * Домашнее задание 6 + 0.05 * Домашнее задание 7 + 0.05 * Околлоквиум – оценка за коллоквиум. + 0.05 * Ообзор – оценка за обзор источников по теме курсового проекта + 0.1 * Оплан1 – оценка за презентацию плана индивидуального курсового проекта. + 0.1 * Оплан2 – оценка за презентацию плана группового проекта. + 0.1 * Опредзащита – оценка за предзащиту курсового проекта + 0.1 * Опроект – оценка за мини-проект
Список литературы

Список литературы

Рекомендуемая основная литература

  • Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., & Lane, J. I. (2017). Big Data and Social Science : A Practical Guide to Methods and Tools. Boca Raton: Chapman and Hall/CRC. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1353316
  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (Vol. Second edition, corrected 7th printing). New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=277008

Рекомендуемая дополнительная литература

  • Martin Oberhofer, Eberhard Hechler, Ivan Milman, Scott Schumacher, & Dan Wolfson. (2014). Beyond Big Data : Using Social MDM to Drive Deep Customer Insight. [N.p.]: IBM Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1600785
  • Szabó, G., & Boykin, O. (2019). Social Media Data Mining and Analytics. Hoboken: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1899346