• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2019/2020

Маркетинговая аналитика на основе больших данных

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус: Курс по выбору (Системы больших данных)
Направление: 38.04.05. Бизнес-информатика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: Full time
Прогр. обучения: Системы больших данных
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

The course Big Data Based Marketing Analytics provides an overview of modern technologies and approaches to marketing analytics with extensive usage of tools, designed for analysis and processing of extremely large and complex datasets.
Learning Objectives

Learning Objectives

  • to explain how to structure and organize modern marketing analysis workflow
  • to give an overview of existing marketing analytical frameworks and solutions
Expected Learning Outcomes

Expected Learning Outcomes

  • give a definition of marketing process
  • estimate the brand value of a particular company or product
  • calculate CLV (Customer Lifetime Value)
  • perform statistically significant A/B tests
  • choose appropriate design for marketing experiments
  • develop a recommendation system based on collected data
  • select appropriate SMM metrics for different media types
Course Contents

Course Contents

  • Marketing analytics in context of marketing process
    A brief introduction
  • Basic Elements of Marketing
    Topics: Brand Management, Sales Funnel, Customer Lifetime Value
  • Marketing Campaign Analysis
    We discuss how to compare marketing campaigns correctly.
  • Personalized marketing
  • Digital Marketing Analytics
Assessment Elements

Assessment Elements

  • non-blocking Mid-term test
  • non-blocking Programming Assignment: Building a Recommender System
  • non-blocking Final test
Interim Assessment

Interim Assessment

  • Interim assessment (2 module)
    0.4 * Final test + 0.3 * Mid-term test + 0.3 * Programming Assignment: Building a Recommender System
Bibliography

Bibliography

Recommended Core Bibliography

  • Charan, A. (2015). Marketing Analytics : A Practitioner’s Guide to Marketing Analytics and Research Methods. Singapore: World Scientific Publishing Company. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1001262

Recommended Additional Bibliography

  • Grigsby, M. (2018). Marketing Analytics : A Practical Guide to Improving Consumer Insights Using Data Techniques (Vol. Second edition). London: Kogan Page. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1738744