• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2023/2024

Статистика I

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Обучение и оценивание как наука)
Направление: 37.04.01. Психология
Когда читается: 1-й курс, 2, 3 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Обучение и оценивание как наука
Язык: английский
Кредиты: 6
Контактные часы: 72

Course Syllabus

Abstract

Within the course Statistics I, types and properties of distributions of variables are discussed as well as general rules for testing statistical hypotheses, methods of descriptive statistics, correlation coefficients, linear and logistic regression analysis, factorial and cluster analysis and latent classes are studied. The work takes place in the R program. In this course students will learn how to set research goals and choose appropriate statistical methods for the analysis, implement and interpret quantitative data analysis results, use statistical packages and work with open datasets. Besides, student will become familiar with current research studies in education and its methodology
Learning Objectives

Learning Objectives

  • Be able to understand fundamental concepts and important terminology in statistics
  • Be able to choose an appropriate statistical method to answer research questions
  • Be able to apply basic statistical methods using R software
  • Be able to critically analyse and interprete results of statistical analysis
Expected Learning Outcomes

Expected Learning Outcomes

  • Able to learn the concept of normal distribution
  • Able to calculate Z-scores
  • Able to calculate point estimates and interpret confidence intervals
  • Able to differentiate between types of measurement scales
  • Able to differentiate between the measures of central tendency and variation for different scales
  • Able to learn the concept of contingency table
  • Able to state the relevant null and alternative hypothesis
  • Able to learn the concept of p-value and level of significance
  • Able to calculate correlation coefficients
  • Able to differentiate between the types of correlations
  • Able to conduct ANOVA
  • Able to run the regression model
  • Able to interpret the linear regression’s coefficients
  • Able to compute the coefficient of determination
  • Able to test regression model assumptions
  • Able to run the regression model with different types of variables
  • Able to interpret the logistic regression’s coefficients
  • Able to differentiate between PCA and FA
  • Able to conduct PCA and FA
  • Able to interpret the result of factor analysis
  • Able to differentiate between Hierarchical clustering and k-means
  • Able to conduct cluster analysis
  • Able to interpret the result of cluster analysis
  • Able to learn the concept of multilevel regression
  • Able to interpret intraclass correlation coefficients
  • Able to interpret fixed and random effects in multilevel regression model
  • Able to distinguish between measurement and structural model
  • Able to build structural model
  • Able to evaluate the quality of structural model
  • Able to interpret the results of moderation / mediation models
Course Contents

Course Contents

  • Introduction to statistics
  • Normal distribution
  • Introduction to hypothesis testing
  • Correlation analysis
  • Hypothesis testing for means & Analysis of variance
  • Introduction to Linear Regression
  • Linear & Logistic regression
  • Factor Analysis
  • Cluster Analysis
Assessment Elements

Assessment Elements

  • non-blocking Homework
    Writen homework based on the material of the course. There are two homework based on materials from Module 2 and 3.
  • non-blocking R Exercises
    R Exercises are given after each seminar. The deadline is the beginning of the next lesson.
  • non-blocking Final Test
    There are two final tests at the end of each module (Module 2 and 3). The test will cover all the material you have learnt during the module.
  • non-blocking Exam
    Presentation of research project
Interim Assessment

Interim Assessment

  • 2023/2024 3rd module
    0.4 * Exam + 0.2 * Final Test + 0.3 * Homework + 0.1 * R Exercises
Bibliography

Bibliography

Recommended Core Bibliography

  • Agresti, A., & Finlay, B. (2014). Statistical Methods for the Social Sciences: Pearson New International Edition (Vol. Pearson new international ed., 4. ed). Harlow England: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1418314
  • Tabachnick, B. G., & Fidell, L. S. (2014). Using Multivariate Statistics: Pearson New International Edition (Vol. 6th ed). Harlow, Essex: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1418064

Recommended Additional Bibliography

  • Математические методы психологического исследования : анализ и интерпретация данных: учеб. пособие, Наследов, А. Д., 2006

Authors

  • YUSUPOVA ELEN MAGOMEDOVNA
  • GRACHEVA DARYA ALEKSANDROVNA