Бакалавриат
2024/2025
Алгебра
Статус:
Курс обязательный (Программная инженерия)
Направление:
09.03.04. Программная инженерия
Где читается:
Факультет компьютерных наук
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
9
Контактные часы:
136
Программа дисциплины
Аннотация
В настоящем курсе изучаются основы линейной и общей алгебры. Линейная алгебра является базовым инструментом, использующимся наравне с математическим анализом во всех прикладных дисциплинах. Курс развивает абстрактное математическое мышление, а также знакомит с мощными инструментами и идеями, применяемыми в теории вероятности и математической статистике, анализе данных, машинном обучении, обработке сигналов и других областях компьютерных наук и математики. Настоящая дисциплина является обязательной и относится к базовым дисциплинам профессионального цикла. Для освоения учебной дисциплины не требуются знания и компетенции, выходящие за пределы требований к поступающим на программу бакалавриата. Изучение данной дисциплины базируется на школьном курсе алгебры и начал анализа.
Цель освоения дисциплины
- Развитие математического кругозора и алгебраического мышления студентов.
- Обучение студентов важнейшим теоретическим положениям линейной алгебры, началам абстрактной алгебры, матричным методам.
- Выработка у студентов навыков решения конкретных задач, требующих исследования систем линейных уравнений, применения матричных вычислений, многомерной геометрии, линейных операторов.
Планируемые результаты обучения
- Умение вычислять определители матриц (в том числе, используя определение), находить ранги матриц.
- Умение выяснять является ли данный алгебраический объект линейным пространством. Уметь находить матрицы линейных операторов, выяснять когда эти матрицы имеют простейший вид и находить его.
- Умение исследовать строение групп. Умение применять основы шифрования. Умение выяснять, является ли данной множество кольцом, полем, алгеброй и уметь устанавливать изоморфизмы между ними.
- Умение классифицировать кривые и поверхности второго порядка и приводить их к каноническому виду с помощью ортогонального преобразования и сдвига.
- Умение находить расстояния между вектором и линейным многообразием в евклидовом пространстве. Умение находить основные матричные разложения.
- Умение находить фундаментальную систему решений однородной СЛАУ, находить общее решение неоднородной СЛАУ, исследовать СЛАУ на совместность.
- Умение приводить билинейные и квадратичные формы к каноническому виду, исследовать их на положительную и отрицательную определенность.
- Умение применять основные векторные и матричные операции для решения задач аналитической геометрии.
- Умение работать с комплексными числами (в частности, умение извлекать комплексные корни). Умение выяснять, является ли данное множество с данной бинарной операцией полугруппой, моноидом, группой.
- Умение решать системы линейных уравнений при помощи алгоритма Гаусса, выполнять операции над матрицами.
Содержание учебной дисциплины
- Системы линейных уравнений, матрицы
- Определители
- Системы линейных уравнений, матрицы (продолжение)
- Векторная алгебра. Элементы аналитической геометрии
- Комплексные числа
- Элементы общей алгебры
- Линейные пространства. Линейные отображения и операторы.
- Билинейные и квадратичные функции, евклидовы пространства
- Кривые и поверхности второго порядка
Элементы контроля
- Контрольная работаПисьменная работа, 120 минут.
- Индивидуальное домашнее задание
- ЭкзаменПисьменная работа на 120 минут.
- Контрольная работаПисьменная работа, 120 минут.
- Индивидуальное домашнее задание
- КоллоквиумСдача коллоквиума по алгебре состоит из двух этапов: • Этап 1: Определения. Студент получает 5 определений из списка, на их написание даётся 10 минут, после чего происходит беседа с принимающим. Для прохождения этого этапа необходимо верно ответить хотя бы 4 определения из 5. При этом оценка за этап равна N - 3, где N – количество верно отвеченных определений. Под верно отвеченным определением подразумевается не только верная формула или формулировка, но и их понимание. • Этап 2: Доказательства. Студент получает 2 вопроса на доказательство, на их написание даётся 40 минут, после чего начинается опрос принимающим. По результатам опроса выставляется оценка. За частично верные рассуждения можно получить промежуточные баллы. Могут быть заданы дополнительные вопросы по билету.
- ЭкзаменПисьменная работа на 120 минут.
Промежуточная аттестация
- 2024/2025 2nd moduleФормула оценивания: О1=0,22∙О_(Кр-1мод)+0,14∙О_(ИДЗ-1 и 2 мод)+0,14∙О_(Сем-1)+0,5∙О_(Экз.раб.-1). Здесь О_(Сем-1)— оценка от 0 до 10 баллов, учитывающая регулярность посещения семинаров, активность на семинарах, в том числе решение задач у доски, и выполнение текущих домашних работ в 1-2 модулях. Оценки за индивидуальные домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(ИДЗ-мод1(3)) и О_(ИДЗ-мод2(4)). В конце второго и четвертого модуля проводятся письменные экзамены.
- 2024/2025 4th moduleФормула оценивания: О2=0,21∙О_(Кр-3мод)+ 0,1∙О_(Сем-2)+0,08∙О_(ИДЗ-3 и 4 мод)+ 0,21∙О_(Коллоквиум-3 и 4мод)+0,5∙О_(Экз.раб.-2). Здесь О_(Сем-2) – оценка от 0 до 10 баллов, учитывающая посещение семинаров, активность на семинарах, в том числе решение задач у доски, и выполнение текущих домашних работ в 3-м и 4-м модулях. Оценки за индивидуальные домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(ИДЗ-мод1(3)) и О_(ИДЗ-мод2(4)). Оценка за коллоквиумы в 3 и 4 модулях вычисляется как среднее арифметическое О_(Коллоквиум-мод3) и О_(Коллоквиум-мод4). В конце второго и четвертого модуля проводятся письменные экзамены.
Список литературы
Рекомендуемая основная литература
- Алгебра и аналитическая геометрия. Т.2, Ч.1: Теоремы и задачи, Ким, Г. Д., 2003
- Аналитическая геометрия и линейная алгебра. Ч.1: ., Умнов, А. Е., 2006
- Введение в алгебру. Ч.1: Основы алгебры, Кострикин, А. И., 2009
- Введение в алгебру. Ч.2: Линейная алгебра, Кострикин, А. И., 2009
- Введение в алгебру. Ч.3: Основные структуры алгебры, Кострикин, А. И., 2009
- Курс алгебры, Винберг, Э. Б., 2002
- Курс аналитической геометрии и линейной алгебры : учебник для вузов, Беклемишев, Д. В., 2009
- Линейная алгебра : учебник и практикум для бакалавров, Бурмистрова, Е. Б., 2014
Рекомендуемая дополнительная литература
- Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры : учебник для вузов / Д. В. Беклемишев. - 12-е изд., испр. - Москва : ФИЗМАТЛИТ, 2009. - 312 с. - ISBN 978-5-9221-0979-6. - Текст : электронный. - URL: https://znanium.com/catalog/product/1913526
- Тыртышников, Е. Е. Матричный анализ и линейная алгебра / Е. Е. Тыртышников. - Москва : ФИЗМАТЛИТ, 2007. - 480 с. - ISBN 978-5-9221-0778-5. - Текст : электронный. - URL: https://znanium.com/catalog/product/544658