• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Методы анализа сетевых структур

Статус: Курс обязательный (Интеллектуальный анализ данных)
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 2-й курс, 1 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для всех кампусов НИУ ВШЭ
Прогр. обучения: Интеллектуальный анализ данных
Язык: русский
Кредиты: 6
Контактные часы: 32

Программа дисциплины

Аннотация

Как отличить сеть развившуюся естественным образом от сети построенную искусственно; определить критические и наиболее важные элементы в сети; выделить сообщества в сетях; предсказать появления ребра; предсказать как сеть будет развиваться с течением времени – всё это вы узнаете в рамках данного курса.
Цель освоения дисциплины

Цель освоения дисциплины

  • Владеть методами кластеризации
  • Значить основные модели случайных графов
  • Владеть методами поиска наиболее важных элементов в сети
Планируемые результаты обучения

Планируемые результаты обучения

  • Знаем модели графов со свойствами "тесного мира". Может запрограммировать.
  • Знает концепцию DHT и принцип работы Chord протокола.
  • Знает основные характеристики графов
  • Понимает Page Rank алгоритм. Понимает модель случайного блуждателя
  • Понимает метод вложения графов в векторное пространство graph2vec
  • Понимает метод спектральной кластеризации. Может запрограммировать.
  • Понимает модель Клайнберга.
  • Понимает модель. Умеет вычислять вероятность возникновения фиксированной структуры,.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основные характеристики графов
  • Google’s PageRank, HITS
  • Случайные графы.
  • Модели графов со свойствами "тесного мира"
  • Алгоритмы кластеризации в сетях
  • Модели навигационных тесных миров
  • Методы вложения графов в векторные пространства.
Элементы контроля

Элементы контроля

  • неблокирующий Лабораторная работа-1
    Учащиеся пишут программный код задач. Решение отправляется онлайн в систему тестирования. Задача засчитывается после того, как программа успешно проходит все тесты.
  • неблокирующий Лабораторная работа-2
  • неблокирующий Лабораторная работа-3
  • неблокирующий Лабораторная работа-4
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 1 модуль
    0.25 * Лабораторная работа-3 + 0.25 * Лабораторная работа-2 + 0.25 * Лабораторная работа-4 + 0.25 * Лабораторная работа-1
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ming-Yang Kao. Encyclopedia of Algorithms. Springer, New York, NY, 2016

Рекомендуемая дополнительная литература

  • Panos M. Pardalos, Ding-Zhu Du, Ronald L. Graham. Handbook of Combinatorial Optimization. Springer Science+Business Media, New York, 2013.
  • Комбинаторика и теория вероятностей, учебное пособие, 99 с., Райгородский, А. М., 2013