• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФИО студента
Название работы
Руководитель
Факультет
Программа
Оценка
Год защиты
Минеев Дмитрий Александрович
Singular Complete Intersections of Quadrics and Cubics
Математика
(Магистратура)
2017
A general smooth complete three-dimensional intersection of a quadric and a cubic is known to be non-rational. It is expected that any smooth variety of this type is non-rational. We consider intersections of quadrics and cubics containing a Veronese surface. They turn out to be singular but the singularities are isolated in general. We associate the conic duality construction to such an intersection which birationally transforms it into cubic hypersurface. This allows to study the rationality of the initial variety. We also study the singularities of such an intersection and extend the constructed birational transformation to Sarkisov link.

Выпускные квалификационные работы (ВКР) в НИУ ВШЭ выполняют все студенты в соответствии с университетским Положением и Правилами, определенными каждой образовательной программой.

Аннотации всех ВКР в обязательном порядке публикуются в свободном доступе на корпоративном портале НИУ ВШЭ.

Полный текст ВКР размещается в свободном доступе на портале НИУ ВШЭ только при наличии согласия студента – автора (правообладателя) работы либо, в случае выполнения работы коллективом студентов, при наличии согласия всех соавторов (правообладателей) работы. ВКР после размещения на портале НИУ ВШЭ приобретает статус электронной публикации.

ВКР являются объектами авторских прав, на их использование распространяются ограничения, предусмотренные законодательством Российской Федерации об интеллектуальной собственности.

В случае использования ВКР, в том числе путем цитирования, указание имени автора и источника заимствования обязательно.

Расширенный поиск ВКР