• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФИО студента
Название работы
Руководитель
Факультет
Программа
Оценка
Год защиты
Осипов Павел Сергеевич
Flat Affine Manifolds
Математика
(Магистратура)
2018
The Hessian geometry is the real analogue of the Kähler one. Sasakian geometry is an odd-dimensional counterpart of the Kähler geometry. In the paper, we study the connection between projective Hessian and Sasakian manifolds analogous to the one between Hessian and Kähler manifolds. In particular, we construct a Sasakian structure on $TM\times \R$ from a projective Hessian structure on $M$. Especially, we are interested in the case of invariant structure on Lie groups. We define semi-Sasakian Lie groups as a generalization of Sasakian Lie groups. Then we construct a semi-Sasakian structure on a group $G\ltimes \R^{n+1}$ for a projective Hessian Lie group $G$. Further, we describe examples of homogeneous Hessian Lie groups and corresponding semi-Sasakian Lie groups. The big class of projective Hessian Lie groups can be constructed by homogeneous regular domains in $\R^n$. The groups $\text{SO}(2)$ and $\text{SU}(2)$ belong to another kind of examples. Using them, we construct semi-Sasakian structures on the group of the Euclidean motions of the real plane and the group of isometries of the complex plane.

Выпускные квалификационные работы (ВКР) в НИУ ВШЭ выполняют все студенты в соответствии с университетским Положением и Правилами, определенными каждой образовательной программой.

Аннотации всех ВКР в обязательном порядке публикуются в свободном доступе на корпоративном портале НИУ ВШЭ.

Полный текст ВКР размещается в свободном доступе на портале НИУ ВШЭ только при наличии согласия студента – автора (правообладателя) работы либо, в случае выполнения работы коллективом студентов, при наличии согласия всех соавторов (правообладателей) работы. ВКР после размещения на портале НИУ ВШЭ приобретает статус электронной публикации.

ВКР являются объектами авторских прав, на их использование распространяются ограничения, предусмотренные законодательством Российской Федерации об интеллектуальной собственности.

В случае использования ВКР, в том числе путем цитирования, указание имени автора и источника заимствования обязательно.

Расширенный поиск ВКР