• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Physics

2019/2020
Academic Year
RUS
Instruction in Russian
7
ECTS credits
Course type:
Compulsory course
When:
1 year, 2-4 module

Instructors

Программа дисциплины

Аннотация

Курс направлен на получение студентами базовых знаний по физике и должен сформировать у студентов современное естественнонаучное мировоззрение. Для успешного прохождения курса студент должен освоить основные законы классической физики, а так же методы физического исследования. В курсе изучаются такие разделы как 1) механика, 2) термодинамика и основы статистической физики, 3) электричество. Знания, полученные при изучении курса, могут быть использованы при изучении таких дисциплин, как электротехника, электроника, метрология и т.д. При обучении предусмотрен контроль знаний студентов в виде домашних работ, контрольных работ, и экзамена.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Физика» являются: • формирование современного естественнонаучного мировоззрения; • получение базовых знаний по подготовке к производственной деятельности; • формирование профессиональных компетенций, связанных с использованием полученных знаний в дальнейшей производственной деятельности.
Планируемые результаты обучения

Планируемые результаты обучения

  • знает основные определения кинематических величин, - знает основные определения и законы динамики поступательного и вращательного движений; - знает характеристики и уравнения механических колебаний и волн;
  • решает типовые прикладные физические задачи
  • владеет навыками проведения физического эксперимента и обработки его результатов.
  • знает основные положения, законы и следствия специальной теории относительности,
  • - знает основные понятия и законы молекулярно-кинетической теории газов, - знает основные понятия, основные функции и их свойства статистической физики, - знает определения основных физических величин и законы термодинамики
  • знает основные определения, законы и теоремы электростатики
  • знает основные определения и законы по теме Постоянный ток
  • - знает определения и законы электромагнетизма, - знает характеристики и уравнения электромагнитных колебаний и волн
  • знает основные определения, явления и законы волновой оптики
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Механика. Механические колебания и волны
    Кинематика материальной точки и твердого тела: • Предмет физики и ее связь с другими науками. Механика и ее структура. Научные абстракции: материальная точка, система материальных точек, абсолютно твердое тело. • Радиус-вектор, траектория, длина пути. Вектор перемещения. Средняя скорость, мгновенная скорость. Среднее ускорение, мгновенное ускорение. Соотношения между кинематическими величинами поступательного движения. Тангенциальное и нормальное ускорение. Классификация движения. • Вектор углового перемещения, угловой скорости, ускорения. Связь между линейными и угловыми величинами. Динамика поступательного движения тела: • Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета. Сила. Инертность. Масса. Импульс. Второй закон Ньютона. Принцип независимости сил. Третий закон Ньютона. Закон сохранения импульса. Связь закона сохранения импульса с однородность пространства. Движение центра масс. • Работа, мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Связь силы и потенциальной энергии. Закон сохранения энергии. Связь закона сохранения энергии с однородностью времени. Графическое представление энергии. Потенциальные кривые. Динамика вращательного движения тела: • Момент инерции материальной точки и системы тел. Теорема Штейнера. • Момент силы относительно точки и оси вращения. Момент импульса относительно точки и оси вращения. • Основное уравнение динамики вращательного движения. • Работа при вращении. Кинетическая энергия вращения. • Закон сохранения момента импульса. Связь закона сохранения момента импульса с изотропностью пространства Механические колебания и волны: • Гармонические колебания и их характеристики: амплитуда колебаний, фаза колебаний, начальная фаза колебаний, циклическая частота, период, частота колебаний. Комплексная форма представлений колебаний. Метод вращающегося вектора. Механические гармонические колебания. Энергия гармонических колебаний. Гармонический осциллятор. Дифференциальное уравнение свободных колебаний и его решение. Пружинный маятник. Физический маятник. Математический маятник. Приведенная длина физического маятника . • Свободные затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний и его решение. Амплитуда, фаза, начальная фаза, циклическая частота, период затухающих колебаний. Декремент затухания. Логарифмический декремент затухания. Время релаксации • Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Зависимость амплитуды и фазы вынужденных колебаний от частоты. Резонанс. • Сложение колебаний одного направления с близкими частотами (биения). Сложение двух гармонических колебаний одинаковой частоты и одного направления. Сложение взаимоперпендикулярных колебаний. Сложение колебаний с разными, но кратными частотами. • Волновые процессы. Упругие волны. Продольные и поперечные волны. Волновой фронт. Волновая поверхность. Волновое уравнение. Уравнение бегущей волны. Фазовая скорость волны. Вектор Умова. Интерференция волн. Стоячие волны.
  • Тема 2. Элементы специальной теории относительности
    • Принцип относительности Галилея и Эйнштейна. Принцип постоянства скорости света. Преобразования Галилея и Лоренца. Следствия из преобразований Лоренца: одновременность событий, длительность событий и длина тел в различных системах отсчета. Релятивистский закон сложения скоростей. Интервал. Пространственноподобные и времениподобные интервалы. Связь собственного времени и интервала. • Релятивистский импульс. Энергия в релятивистской механике. Связь энергии и массы. Связь импульса и энергии.
  • Тема 3. Термодинамика и статистическая физика
    Физические основы молекулярно-кинетической теории: • Молекулярная масса, молярная масса, объем, концентрация, количество вещества, плотность вещества. Состояние системы. Процесс. Равновесный, обратимый и необратимый, круговой процессы. • Уравнение состояния идеального газа. • Основное уравнение молекулярно-кинетической теории. Средняя квадратичная скорость и средняя энергия. Элементы статистической физики: • Вероятность состояния. Статистическое распределение. Функция распределения. Условие нормировки для функции распределения. Свойства функции распределения. Среднее значение физической величины. • Распределение Гиббса. Распределение Максвелла по компонентам скоростей и по абсолютным скоростям. График функции распределения по скоростям. Наиболее вероятная скорость. Средняя скорость. Средняя квадратичная скорость. Функция распределения по энергиям. Средняя энергия. • Барометрическая формула. Распределение Больцмана. Физические основы термодинамики: • Температура. Международная практическая и термодинамическая шкала температур. • Внутренняя энергия. Степени свободы. Распределение энергии по степеням свободы. Работа газа при изменении его объема. Теплота. Первое начало термодинамики. • Удельная теплоемкость. Молярная теплоемкость. Теплоемкость при постоянном объеме и постоянном давлении. Уравнение Майера. • Уравнение адиабаты идеального газа. • Макро- и микросостояния. Статистический вес. Энтропия. Формула Больцмана. Второе начало термодинамики. Приращение энтропии при обратимом и при необратимом процессе. Третье начало термодинамики. • Тепловой двигатель. Холодильная установка. Цикл Карно и его к.п.д. для идеального газа. Формулировки второго начала термодинамики Клаузиуса и Кельвина.
  • Тема 4. Электростатика
    • Заряд. Точечный заряд. Закон Кулона. Электростатическое поле. Напряженность электростатического поля. Единицы напряженности. Силовые линии напряженности. Принцип суперпозиции полей. • Поле диполя. Поведение диполя во внешнем поле. • Поток вектора напряженности электростатического поля. Теорема Гаусса для электростатического поля в вакууме. Дифференциальная формулировка теоремы Гаусса. Дивергенция вектора Е. Расчет полей с помощью теоремы Гаусса: поле бесконечной заряженной плоскости, двух плоскостей, сферической поверхности, объемно заряженного шара, объемно заряженного цилиндра, нити. • Циркуляция вектора напряженности электростатического поля. Теорема о циркуляции вектора Е (интегральная формулировка). Дифференциальная формулировка теоремы о циркуляции. Потенциальность электростатического поля. Ротор вектора Е. • Потенциал электростатического поля. Единицы потенциала. Потенциал системы зарядов. Связь напряженности и потенциала. Вычисление потенциала по напряженности: равномерно заряженная плоскость, объемно заряженный шар, объемно заряженный цилиндр. • Проводники в электростатическом поле. Поле внутри проводника и вблизи поверхности проводника. • Типы диэлектриков: полярные, неполярные, ионные. Поляризация диэлектриков. Поляризованность, напряженность поля в диэлектрике. Связанный заряд. Вектор электрического смещения. Теорема Гаусса для вектора D. Условие на границе раздела двух диэлектриков: тангенциальные и нормальные составляющие векторов Е и D. • Электроемкость уединенного проводника. Единицы электроемкости. Конденсаторы. Емкости плоского, сферического и цилиндрического конденсаторов. Параллельное и последовательное соединение конденсаторов. • Энергия системы зарядов. Энергия уединенного заряженного проводника. Энергия заряженного конденсатора. Энергия электростатического поля. Плотность энергии электростатического поля.
  • Тема 5. Постоянный электрический ток
    • Электрический ток. Сила и плотность тока. Сторонние силы. Напряженность поля сторонних сил. Электродвижущая сила. Работа поля сторонних сил и электростатического поля. Напряжение. Закон Ома для однородного участка цепи в интегральной и дифференциальной формах. Закон Ома для неоднородного участка цепи (обобщенный закон Ома) в интегральной и дифференциальной формах. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
  • Тема 6. Электромагнетизм и электромагнитные колебания и волны
    Электромагнетизм: • Магнитное поле. Закон Био-Савара-Лапласа. Магнитное поле движущегося заряда. Закон Ампера. Действие магнитного поля на движущийся заряд. Эффект Холла. Поведение витка с током в магнитном поле. • Теорема Гаусса для вектора B в интегральной и дифференциальной формах. Теорема о циркуляции для вектора B в интегральной и дифференциальной формах. • Магнитное поле в веществе. Макро- и микротоки. Намагниченность. Вектор напряженности магнитного поля. Теорема о циркуляции для вектора H. Магнитная восприимчивость. Связь вектора B и H. Диамагнетики. Парамагнетики. Ферромагнетики. • Работа по перемещению проводника с током в магнитном поле. • Явление электромагнитной индукции. Закон Фарадея. Правило Ленца. Индуктивность контура. Явление самоиндукции. Ток при замыкании и размыкании цепи. Взаимная индукция. • Энергия магнитного поля. Плотность энергии магнитного поля. • Вихревое электрическое поле. Ток смещения. Уравнения Максвелла для электромагнитного поля. Свойства уравнений Максвелла. Электромагнитные колебания и волны: • Свободные колебания в колебательном контуре. Свободные затухающие колебания в колебательном контуре. Вынужденные колебания. Резонанс напряжения и тока. • Электромагнитные волны. Свойства электромагнитных волн. Энергия электромагнитных волн. Вектор Умова-Пойнтинга. Импульс электромагнитной волны. Шкала электромагнитных волн.
  • Тема 7. Волновая оптика
    • Основные определения и законы геометрической оптики. Корпускулярная и волновая теории света. • Принцип Гюйгенса. Когерентность. Интерференция света. Связь разности фаз и оптической разности хода. Расчет интерференционной картины от двух источников. Методы наблюдения интерференции: метод Юнга, зеркала Френеля, бипризма Френеля. Интерференция в тонких пленках: полосы равного наклона и равной толщины. Кольца Ньютона. Просветление оптики. • Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция на круглом отверстии и диске. Зонные пластинки. Дифракция Фраунгофера на одной щели. Дифракция Фраунгофера на двух щелях. Дифракционная решетка. Разрешающая способность оптических приборов. Разрешающая способность дифракционной решетки. Дифракция на пространственной решетке. Формула Вульфа-Брэггов. • Естественный и поляризованный свет. Закон Малюса. Поляризация при отражении и преломлении. Угол Брюстера.
Элементы контроля

Элементы контроля

  • неблокирующий семинар 1
  • неблокирующий лабораторные работы 1
    Лабораторные работы выполняются бригадами (по 2 человека) в соответствии с графиком выполнения лабораторных работ. Этот график и методические описания всех лабораторных работ представлены на сайте Департамента электронной инженерии МИЭМ НИУ ВШЭ в разделе «Учебная лаборатория волновой и квантовой оптики, атомной и ядерной физики» https://miem.hse.ru/edu/ee/physics/metod
  • неблокирующий контрольная работа
  • неблокирующий коллоквиум
  • блокирующий экзамен 1
    Экзамен проводится в письменной форме (тестирование по материалам курса). Экзамен проводится на платформе LMS ВШЭ. К экзамену необходимо подключиться за 10 минут до начала. Для участия в экзамене студент обязан: явиться на экзамен согласно точному расписанию, без опозданий. Во время экзамена студентам запрещено: общаться с кем-либо, пользоваться конспектами и подсказками. Закончить тест студент обязан строго через час после начала, отмеченного в расписании. Кратковременным нарушением связи во время экзамена считается нарушение связи менее минуты. Долговременным нарушением связи во время экзамена считается нарушение связи в течение минуты и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи. Экзамен проводится в устной форме в конце третьего модуля. Экзаменационный билет содержит два теоретических вопроса и задачу. Темы экзамена: Термодинамика и молекулярная физика; электростатика и постоянный ток.
  • неблокирующий семинар 2
  • неблокирующий лабораторные работы 2
    Лабораторные работы выполняются бригадами (по 2 человека) в соответствии с графиком выполнения лабораторных работ. Этот график и методические описания всех лабораторных работ представлены на сайте Департамента электронной инженерии МИЭМ НИУ ВШЭ в разделе «Учебная лаборатория волновой и квантовой оптики, атомной и ядерной физики» https://miem.hse.ru/edu/ee/physics/metod
  • блокирующий экзамен 2
    Экзамен проводится в письменной форме (тестирование по материалам курса). Экзамен проводится на платформе LMS ВШЭ. К экзамену необходимо подключиться за 10 минут до начала. Для участия в экзамене студент обязан: явиться на экзамен согласно точному расписанию, без опозданий. Во время экзамена студентам запрещено: общаться с кем-либо, пользоваться конспектами и подсказками. Закончить тест студент обязан строго через час после начала, отмеченного в расписании. Кратковременным нарушением связи во время экзамена считается нарушение связи менее минуты. Долговременным нарушением связи во время экзамена считается нарушение связи в течение минуты и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи. Экзамен проводится в устной форме в конце четвертого модуля. Экзаменационный билет содержит два теоретических вопроса и задачу. Темы экзамена: электромагнетизм, электромагнитные колебания и волны, волновая оптика.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (3 модуль)
    0.2 * коллоквиум + 0.2 * контрольная работа + 0.1 * лабораторные работы 1 + 0.1 * семинар 1 + 0.4 * экзамен 1
  • Промежуточная аттестация (4 модуль)
    0.2 * лабораторные работы 2 + 0.2 * семинар 2 + 0.6 * экзамен 2
Список литературы

Список литературы

Рекомендуемая основная литература

  • Сборник задач по курсу физики для втузов : учеб. пособие, Трофимова, Т. И., 2003

Рекомендуемая дополнительная литература

  • Курс физики : учеб. пособие для вузов, Трофимова, Т. И., 2005