• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Statistics

2020/2021
Academic Year
ENG
Instruction in English
7
ECTS credits
Course type:
Compulsory course
When:
2 year, 1-4 module

Instructors

Course Syllabus

Abstract

Elements of statistics is a two-semesters course for second year ICEF students. This is a course for students specializing in economics. The course is taught in Russian and English. Basic ideas of statistics, such as descriptive statistics, population and sample, parameters estimation, testing statistical hypotheses etc, are studied in the course, as well as elements of probability theory which are necessary for understanding the course. Prerequisites Prerequisites are Calculus (functions of several variables, partial derivatives, integrals, maximum of functions), and elements of Linear algebra (vectors, matrices, linear equations).
Learning Objectives

Learning Objectives

  • The main objective of the course is to give a sound and self-contained (in the sense that the necessary probability theory is included) description of classical or mainstream statistical theory and its applications. The students should learn to carry out a simple analysis of data (to find mean, median, standard deviation and other descriptive statistics), to present the data graphically (histograms, stem plots). They should understand the differences between population and sample, and theoretical and sample characteristics. Since it is not worth while to teach Statistics without elements of probability theory, studying its basic notions and results is a part of the course. Students should understand what probability space, random event, probability of an event are. The should know how to calculate probabilities of complex events, solve elementary combinatorial problems, use the full-probability and Bayes formulas. The students should have a clear understanding of what a random variable and its distribution are. The students should learn to formulate and solve basic problems of statistics, such as pa-rameters estimation, statistical hypotheses testing, correlation analysis, analysis of variance, Spearman correlation, contingency tables. One of the course aims is to prepare students for fur-ther studying of Econometrics on the basis of studying simple and multiple regression models. The course is not mathematically rigorous. Proofs, and even exact statements of results, are often not given. The problems are an essential part of the course. A serious effort has been made in the problems to illustrate the variety of ways in which the theory may be applied.
Expected Learning Outcomes

Expected Learning Outcomes

  • be able to design and understand the structure of data; use various visual and table presentations of data
  • be able to use the concept of mathematical statistics, its application to real life problems
  • be able to use the concept of probability, as a model for real life; discrete and continuous random variables; joint and conditional distributions
  • be able to correctly use ANOVA in real life applications
  • be able to use simple regression model and understand computer outputs
Course Contents

Course Contents

  • Primary data analysis
    - Graphical presentation of one variable data. Dotplot. Steamplot. Histogram. - Data irregularities. Outliers. Clusters. Histogram's shape. - Descriptive statistics. Measures of central tendency. Arithmetic mean, median, mode, geo-metric mean. Measures of variation. Range, sample standard deviation, interquartile range, mean absolute deviation, mean relative deviation. - Descriptive statistics and linear transformation of data. - Measures of the relative standing. Quartiles. Percentiles. Z-score. - Grouped data.
  • Elements of Probability theory
    - Probability. Outcome space. Events algebra. Independent events. Mutually exclusive events. Conditional probability. Full probability formula. Bayes' formula. - Discrete Random Variable. Probability density function (p.d.f.). Mathematical Expectation. Variance. Standard deviation. Binomial distribution. - Continuous random variables. Distribution function. Probability density function. Uniform distribution. Normal distribution. - Law of large numbers. Normal approximation to binomial distribution. Linear transformation of a random variable. - Two random variables. Covariance. Correlation. Uncorrelated and independent random vari-ables. Mean and Variance of a linear combination of two random variables.
  • Elements of Mathematical Statistics
    - Random Samples. Duality of Interpretation. Estimation of population parameters. Sample mean and sample variance. Mean and variance of the sample mean. Estimation of proportions. - Point Estimation. Properties of the estimators. Unbiasedness, efficiency, consistency. Estima-tors for mean and variance. - Maximum Likelihood. - Interval estimation. Confidence intervals. Estimation of the mean. Normal approximation for large samples, small samples (Student distribution). Difference of two means. Proportions. - Hypothesis testing. Hypothesis testing with confidence intervals. Hypothesis testing with test-statistics. Two-sided and one-sided p-values. - Chi-square goodness-of-fit test. Contingency tables.
  • Models of simple regression
    - X-Y graph. Line fitting. Ordinary Least Squares. - Transformations of regressors. - Outliers. - Forecasts. - Regression residuals. Residuals and errors. - Statistical properties of the estimators. Hypothesis testing.
  • Analysis of variance (ANOVA)
    - One-factor analysis of variance. - Two-factors analysis of variance. - Confidence intervals.
Assessment Elements

Assessment Elements

  • non-blocking Home assignments and quizes
  • non-blocking Midterm test1 (fall)
    Для студентов она дистанте экзамен проводится в письменной форме с использованием асинхронного прокторинга. Экзамен проводится на платформе https://hse.student.examus.net). К экзамену необходимо подключиться за 10 минут до начала. Проверку настроек компьютера необходимо провести заранее, чтобы в случае возникших проблем у вас было время для обращения в службу техподдержки и устранения неполадок. Компьютер студента должен удовлетворять требованиям: 1. Стационарный компьютер или ноутбук (мобильные устройства не поддерживаются); 2. Операционная система Windows (версии 7, 8, 8.1, 10) или Mac OS X Yosemite 10.10 и выше; 3. Интернет-браузер Google Chrome последней на момент сдачи экзамена версии (для проверки и обновления версии браузера используйте ссылку chrome://help/); 4. Наличие исправной и включенной веб-камеры (включая встроенные в ноутбуки); 5. Наличие исправного и включенного микрофона (включая встроенные в ноутбуки); 6. Наличие постоянного интернет-соединения со скоростью передачи данных от пользователя не ниже 1 Мбит/сек; 7. Ваш компьютер должен успешно проходить проверку. Проверка доступна только после авторизации. Для доступа к экзамену требуется документ удостоверяющий личность. Его в развернутом виде необходимо будет сфотографировать на камеру после входа на платформу «Экзамус». Также вы должны медленно и плавно продемонстрировать на камеру рабочее место и помещение, в котором Вы пишете экзамен, а также чистые листы для написания экзамена (с двух сторон). Это необходимо для получения чёткого изображения. Во время экзамена запрещается пользоваться любыми материалами (в бумажном / электронном виде), использовать телефон или любые другие устройства (любые функции), открывать на экране посторонние вкладки. В случае выявления факта неприемлемого поведения на экзамене (например, списывание) результат экзамена будет аннулирован, а к студенту будут применены предусмотренные нормативными документами меры дисциплинарного характера вплоть до исключения из НИУ ВШЭ. Если возникают ситуации, когда студент внезапно отключается по любым причинам (камера отключилась, компьютер выключился и др.) или отходит от своего рабочего места на какое-то время, или студент показал неожиданно высокий результат, или будут обнаружены подозрительные действия во время экзамена, будет просмотрена видеозапись выполнения экзамена этим студентом и при необходимости студент будет приглашен на онлайн-собеседование с преподавателем. Об этом студент будет проинформирован заранее в индивидуальном порядке. Во время выполнения задания, не завершайте Интернет-соединения и не отключайте камеры и микрофона. Во время экзамена ведется аудио- и видео-запись. Процедура пересдачи проводится в соответствии с нормативными документами НИУ ВШЭ.
  • non-blocking Midterm test2 (winter)
  • blocking Midterm test3 (spring)
    if a student get less than 25 points at the spring midterm test3 it means she/he FAILED, and have to pass a Make-up, doesn’t matter what the final score or London exam is.
  • non-blocking London University exam
Interim Assessment

Interim Assessment

  • Interim assessment (3 module)
    See interim assessment for module 4 for final grade determination.
  • Interim assessment (4 module)
    0.15 * Home assignments and quizes + 0.37 * London University exam + 0.15 * Midterm test1 (fall) + 0.1 * Midterm test2 (winter) + 0.23 * Midterm test3 (spring)
Bibliography

Bibliography

Recommended Core Bibliography

  • Newbold, P., Carlson, W. L., & Thorne, B. (2013). Statistics for Business and Economics: Global Edition (Vol. Eight edition). Boston, Massachusetts: Pearson Education. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1417883