• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2019/2020

Research Seminar "Physics of Two-Dimensional Systems"

Type: Elective course (Physics)
Area of studies: Physics
Delivered by: Faculty of Physics
When: 3 year, 4 module
Mode of studies: offline
Instructors: Vadim Khrapai
Language: English
ECTS credits: 3

Course Syllabus

Abstract

Курс посвящен исследованию квантовых явлений, структурных и электронных свойств изолированных и интегрированных двумерных систем в различных внешних условиях (в том числе во внешних электрическом и магнитном полях). Пререквизитами курса являются: ● Общая физика (полный курс) ● Квантовая механика и элементы теории групп ● Математический анализ The current course is devoted to instigation of quantum-mechanical phenomena and structuralelectronic properties of separate or integrated two-dimensional systems, at various external conditions, such as electric and magnetic fields. The prerequisites required for the course: General Physics (full), Introduction to Physics of Solids, Quantum Mechanics and Group Theory, Mathematical Analysis 1, 2, 3 and Introduction to Numerical Analysis.
Learning Objectives

Learning Objectives

  • Курс посвящен исследованию квантовых явлений, структурных и электронных свойств изолированных и интегрированных двумерных систем в различных внешних условиях (в том числе во внешних электрическом и магнитном полях). Пререквизитами курса являются: ● Общая физика (полный курс) ● Квантовая механика и элементы теории групп ● Математический анализ The current course is devoted to instigation of quantum-mechanical phenomena and structuralelectronic properties of separate or integrated two-dimensional systems, at various external conditions, such as electric and magnetic fields. The prerequisites required for the course: General Physics (full), Introduction to Physics of Solids, Quantum Mechanics and Group Theory, Mathematical Analysis 1, 2, 3 and Introduction to Numerical Analysis.
Expected Learning Outcomes

Expected Learning Outcomes

  • пользуется полученными знаниями для решения экспериментальных и теоретических задач, делает качественные выводы при получении новых результатов исследований, производит оценки параметров и характеристик
Course Contents

Course Contents

  • Graphene fundamentals, an experimentalist’s point of view; tight-binding approach to electronic band structure of monolayer graphene, chiral electrons and Klein tunnelling
  • Introduction to van der Waals heterostructures 1; structural formation, superlattice and mini-bands
  • Quantum transport in van der Waals heterostructures: ● Diffusive transport ● Ballistic transport ● Hydrodynamic Kinetics
  • Graphene fundamentals, an experimentalist’s point of view; tight-binding approach to electronic band structure of bilayer graphene, trigonal warping and layer asymmetry
  • Introduction to van der Waals heterostructures 2; structural formation, superlattice and mini-bands
  • Quantum tunnelling in van der Waals heterostructures: ● Chiral quantum state ● Resonant tunnelling replicas
  • Quantum dots, single electron charging and single electron tunnelling transistors; from theory to experiment
  • Introduction to two-dimensional materials integrated into van der Waals heterostructures 1; superconductors
  • Introduction to two-dimensional materials integrated into van der Waals heterostructures 2; ferromagnets
Assessment Elements

Assessment Elements

  • non-blocking Контрольная работа
    В 2019-2020 году проводится одна контрольная работа в середине модуля, включающая задачи по теме курса.
  • non-blocking Экзамен
Interim Assessment

Interim Assessment

  • Interim assessment (4 module)
    0.5 * Контрольная работа + 0.5 * Экзамен
Bibliography

Bibliography

Recommended Core Bibliography

  • Wolf, E. L. (2013). Graphene : A New Paradigm in Condensed Matter and Device Physics. Oxford: OUP Oxford. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=653266

Recommended Additional Bibliography

  • Guan, S., Yang, S. A., Zhu, L., Hu, J., & Yao, Y.-G. (2015). Electronic, Dielectric, and Plasmonic Properties of Two-Dimensional Electride Materials X$_2$N (X=Ca, Sr): A First-Principles Study. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C05C659
  • Hatam-Lee, S. M., & Rajabpour, A. (2019). Comparison of thermal conductivity of carbon based 2D materials; from C3N to graphdiyne lattices. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.02929
  • Liu, C. (2018). Electrical and Optoelectronic Properties of the Nanodevices Composed of Two-Dimensional Materials : Graphene and Molybdenum (IV) Disulfide. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1878011