• A
• A
• A
• ABC
• ABC
• ABC
• А
• А
• А
• А
• А
Regular version of the site
Bachelor 2020/2021

## Numerical Methods

Type: Compulsory course (Applied Mathematics)
Area of studies: Applied Mathematics
When: 3 year, 3, 4 module
Mode of studies: distance learning
Open to: students of one campus
Language: English
ECTS credits: 4

### Course Syllabus

#### Abstract

Numerical computations historically play a crucial role in natural sciences and engineering. These days however, it’s not only traditional «hard sciences»: whether you do digital humanities or biotechnology, whether you design novel materials or build artificial intelligence systems, virtually any quantitative work involves some amount of numerical computing . These days, you hardly ever implement the whole computation yourselves from scratch. We rely on libraries which package tried-and-tested, battle-hardened numerical primitives. It is vanishingly rare however that a library contains a single pre-packaged routine which does all what you need. Numerical computing involves assembling these building blocks into computational pipelines. This kind of work requires a general understanding of basic numerical methods, their strengths and weaknesses, their limitations and their failure modes. And this is exactly what this course is about. It is meant to be an introductory, foundational course in numerical analysis, with the focus on basic ideas. We will review and develop basic characteristics of numerical algorithms (convergence, approximation, stability, computational complexity and so on), and will illustrate them with several classic problems in numerical mathematics. You will also work on implementing abstract mathematical constructions into working prototypes of numerical code. Upon completion of this course, you will have an overview of the main ideas of numerical computing, and will have a solid foundation for reading up on and working with more advanced numerical needs of your specific subject area. As prerequisites for this course, we assume a basic command of college-level mathematics (linear algebra and calculus, mostly), and a basic level of programming proficiency. Дисциплина изучается в формате смешанного обучения blended learning, с использованием онлайн-курса Introduction to Numerical Analysis на платформе Coursera, https://www.coursera.org/learn/intro-to-numerical-analysis/

#### Learning Objectives

• Освоение базовых знаний о численных методах, используемых в современной прикладной математике
• Приобретение навыков работы в математических пакетах и с библиотеками математического программного обеспечения

#### Expected Learning Outcomes

• Знание математические основы численных методов, применяемых в современных прикладных и фундаментальных исследованиях
• Умение правильно выбирать тот или иной численный метод для решения конкретных математических задач
• Навыки работы со стандартными математическими пакетами

#### Course Contents

• Предмет вычислительной математики.
Постановка вычислительной задачи. Этапы решения. Корректность, устойчивость. Число обусловленности. Погрешности округления. Особенности машинной арифметики.
• Решение нелинейных уравнений.
Постановка задачи приближенного решения нелинейных уравнений. Локализация корней. Метод бисекции, метод простой итерации, метод Ньютона: алгоритмы, теоремы сходимости. Априорные и апостериорные оценки погрешности. Приведение к виду, удобному для итераций. Влияние погрешности вычислений. Вычисление кратных корней.
• Решение систем линейных алгебраических уравнений прямыми методами.
Нормы векторов и матриц. Обусловленность задачи решения систем линейных алгебраических уравнений . Метод Гаусса и его модификации. LU-разложение матрицы. Задачи, решаемые на основе LU- разложения. Трудоемкость метода. Метод Холецкого. Метод прогонки. Алгоритм и трудоемкость метода.
• Решение систем линейных алгебраических уравнений итерационными методами.
Метод простой итерации и метод Зейделя: основные алгоритмы и теоремы сходимости. Каноническая форма записи итерационных методов. Итерационный метод с оптимальным параметром.
• Задача на собственные значения.
Постановка задачи на поиск собственных значений. Степенной метод, обратная итерация. Сдвиги. QR-алгоритм.
• Приближение функций в смысле наименьших квадратов.
Постановки задач приближения функций. Метод наименьших квадратов: вывод нормальной системы уравнений, ее разрешимость. Выбор степени аппроксимирующего многочлена.
• Интерполяция функций.
Полиномиальная интерполяция. Существование и единственность интерполяционного многочлена. Многочлен Лагранжа. Погрешность интерполяции. Интерполяция с кратными узлами. Конечные разности. Интерполяционный многочлен Лагранжа и Ньютона на равномерной сетке. Разделенные разности. Интерполяционный многочлен Ньютона. Кусочно-полиномиальная интерполяция.
• Сплайны.
Определение сплайна. Многочлен Эрмита. Построение кубических сплайнов дефектов один и два. Различные виды граничных условий.
• Решение систем нелинейных уравнений.
Постановка задачи отыскания решения систем нелинейных уравнений, корректность и обусловленность задачи. Метод простой итерации: сходимость метода, модификации. Проблема выбора начального приближения. Метод Ньютона. Теорема о квадратичной сходимости. Трудности использования метода Ньютона. Влияние вычислительной погрешности. Другие подходы к решению задач по решению систем нелинейных уравнений.
• Минимизация функций.
Постановка задачи одномерной минимизации. Основные этапы решения. Решение задачи одномерной минимизации методом деления отрезка пополам. Алгоритм и оценка погрешности. Решение задачи одномерной минимизации методом золотого сечения. Алгоритм и оценка погрешности. Связь с задачей отыскания корней нелинейного уравнения. Метод Ньютона для решения задачи минимизации функций.
• Численное интегрирование.
Постановка задачи численного интегрирования. Вывод формул прямоугольников, трапеций и Симпсона и оценки погрешностей.
• Численное дифференцирование.
Постановка задачи численного дифференцирования. Вычисление левой, правой и центральной производной (первого порядка). Вторая разностная производная. Их оценки погрешности.

#### Assessment Elements

• Домашние задания
• Аудиторная работа
• Экзамен
Экзамен проводится письменной форме в экзаменационный период четвертого модуля с использованием асинхронного прокторинга ВШЭ. Длительность экзамена один астрономический час.Экзамен проводится на платформе Moodle, прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам разрешено использование текстовых редакторов и IDE (VS code, Atom, Spyder --- любые варианты), также разрешено использование Jupyter Notebook (в браузере) либо Gooble colaboratory (colab.research.google.com). Разрешено использование текстовых редакторов из списка выше, как локальных, так и онлайн. Разрешено использовать материалы дисциплины, размещенные на странице в classroom (код дисциплины zmrcji2, ссылка https://classroom.google.com/u/1/c/NTUwOTI3NTQ2MTBa). Можно использовать свои письменные конспекты (в тетради или на распечатанных листах). Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать, использовать онлайн-ресурсы, отличные от указанных в предыдущем абзаце. Использовать печатные книги также запрещено. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Экзамен на время кратковременного нарушения связи не продлевается. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене.
• контрольно-измерительные материалы
контрольно-измерительные материалы
• Оценка за прохождение онлайн-компоненты

#### Interim Assessment

• Interim assessment (4 module)
0.1 * Аудиторная работа + 0.3 * Домашние задания + 0.3 * контрольно-измерительные материалы + 0.3 * Экзамен

#### Recommended Core Bibliography

• Вычислительные методы для инженеров : учеб. пособие для вузов, Амосов А. А., Дубинский Ю. А., 2003

#### Recommended Additional Bibliography

• Higham, N. J., & Dennis, M. R. (2015). The Princeton Companion to Applied Mathematics. Princeton: Princeton University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1426583
• Численные методы : учеб. пособие для вузов, Калиткин Н. Н., 2011