• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Programme Overview

The Master of Applied Statistics with Network Analysis is administered by the NRU HSE International Laboratory for Applied Network Research. The Scientific Supervisor of the programme is Anuška Ferligoj, PhD, Professor at University of Ljubljana, who is also the Academic Supervisor of the laboratory. The Academic Supervisor of the programme is Valentina Kuskova, PhD, University of Indiana.

The knowledge and skillset obtained by graduates of the programme will render them skilled practitioners, able to apply advanced complex data analysis techniques working in a range of organizations - both in commercial companies operating in various industries (banking, insurance, consulting, IT, medicine, pharmacy), and in research organizations (sociology, marketing).

Master’s programme 'Applied Statistics with Network Analysis'


Relevance and originality of the programme

There is a shortage of specialists in applied statistics, especially in the area of ​​social network analysis. At the same time, training in the field of statistics is carried out in different ways: the majority of educational programmes in this area belong to the field of economics and focus mainly on mathematical methods; in the field of sociology, the study of statistics is limited to the study of probability theory and introductory courses.

This programme is unique because it is the first programme in Russia to offer a comprehensive approach to data analysis in different areas. As part of the programme, students from different disciplines can come together to solve practical analytical problems. Those mathematically inclined gain an understanding of sociology and the object of research, while those with a background in the humanities will be able to build their skillset and gain a deeper understanding of statistical processes making up the data analysis that we teach. In addition, a special focus of the programme will be the analysis of social networks , a direction of data science that is becoming increasingly popular in foreign and Russian research practice.

Another important characteristic of the programme is its applied nature - students do not learn from abstract theoretical constructs, but rather from dealing with specific applied research questions. Students will be able to apply their knowledge by solving practical problems, working at the International Laboratory for Applied Network Analysis, Russian analytical centers and commercial companies.

Programme Goals

One of the main goals of the programme is to combine a modern approach to data analysis with the theory of social processes. It provides a holistic view of the theoretical and methodological basics, allowing students to select the approach best fitted to particular research questions, as well as giving them an understanding of the data structure to combine numerous statistical tools to solve practical problems.

Another important goal of the programme is to train students in the area of social network analysis. In recent years, this direction of data science has become more popular and is used in various fields, including Psychology, Sociology, Political Science, Economics, Biology, Computer Science and Energy. In a letter to the editorial board of the first issue of the journal 'Network Science', Stanley Wasserman and colleagues, in explaining Network Studies as a distinct scienctific area, cited another well-known network researcher Duncan Watts: 'Networks are important. Therefore, if we do not understand networks, we cannot understand the functions of the market, the solution of organizational problems or changes in the society' (Network Science, №1, p. 2).


Who will be interested in this programme

The programme is highly relevant to anyone who is interested in carrying out real-world data analysis.

Sociologists, political scientists, psychologists and representatives of other areas of social sciences will expand their knowledge of statistical tools and will learn how to use them to solve applied problems in their areas.

For mathematicians, econometricians, and economists who already have a fundamental understanding of statistics and mathematical data analysis, the programme will help to develop skills in constructing a theory based on the data model and in integrating complex issues and data into the model, enabling them to solve research problems.