• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Urban Data

2020/2021
Academic Year
ENG
Instruction in English
4
ECTS credits
Course type:
Elective course
When:
1 year, 1 semester

Instructor

Course Syllabus

Abstract

Modern urban research and practice requires deep understanding of spatial processes and spatial data that can be used to record and analyse them. In this course students will learn how to work with such data using QGIS and GeoDa. The students will learn how to load the data, perform appropriate transformations and geoprocessing, visualise spatial data and apply spatial statistics.
Learning Objectives

Learning Objectives

  • Provide with basic skills required for acquisition, analysis and visualisation of urban spatial data.
Expected Learning Outcomes

Expected Learning Outcomes

  • Acquire spatial urban data from various data sources
  • Use QGIS to store and visualise spatial data, to apply geoprocessing
  • Use QGIS and GeoDa to explore spatial data for urban research and analytics
  • Use GeoDa for statistical analysis and exploratory data analysis of spatial urban data
Course Contents

Course Contents

  • Introduction to Urban Data
  • Introduction to Geographic Information Systems
  • Urban Data Analytics for Research
  • Data Visualisation
  • Urban Data Sources and Field Data Collection
  • Spatial Statistics
Assessment Elements

Assessment Elements

  • non-blocking Lab 1
  • non-blocking Lab 2
  • non-blocking Lab 3
  • non-blocking Lab 4
  • non-blocking Lab 5
  • non-blocking Lab 6
Interim Assessment

Interim Assessment

  • Interim assessment (1 semester)
    0.1 * Lab 1 + 0.18 * Lab 2 + 0.18 * Lab 3 + 0.18 * Lab 4 + 0.18 * Lab 5 + 0.18 * Lab 6
Bibliography

Bibliography

Recommended Core Bibliography

  • Arbia, G. (2014). A Primer for Spatial Econometrics : With Applications in R. Basingstoke: Palgrave Macmillan. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=998543
  • Graser A., TotalBoox, TBX. Learning QGIS - Second Edition. Packt Publishing, 2014.
  • Knaflic, C. N. (2015). Storytelling with Data : A Data Visualization Guide for Business Professionals. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1079665
  • Luc Anselin, Ibnu Syabri, & Youngihn Kho. (2006). GeoDa: an introduction to spatial data analysis. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.13C715BA
  • Offenhuber, D., & Ratti, C. (2014). Decoding the City : Urbanism in the Age of Big Data. Basel, Switzerland: Birkhäuser. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=852621
  • Pucci P., Manfredini F., Tagliolato P. Mapping Urban Practices Through Mobile Phone Data. Springer, 2015. 94 p.

Recommended Additional Bibliography

  • Arbia G. Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence. Springer Science & Business Media, 2006. 220 p.