• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

HSE Physics Students to Help Create Map of Universe

The Higher School of Economics is welcoming its first class of students to the Faculty of Physics. The new faculty is unique in that it fosters a close relationship between education and science. At the Space Research Institute, for instance, future master’s students will create devices to study space plasma, analyse data from satellites, and learn to determine space weather.

The HSE Faculty of Physics has six joint departments, including the Department of Space Physics, which was created in partnership with the Space Research Institute of the Russian Academy of Sciences. This is the main academic institute for the study and use of outer space.

The Space Research Institute was founded in 1965 and currently conducts experimental and theoretical scientific work in fields such as astrophysics, the physics of planets and small bodies in the solar system, solar physics and the physics of solar-terrestrial connections, cosmic plasma, and nonlinear geophysics. The institute also develops programmes for scientific space research and develops and tests different apparatuses for research projects approved by the Russian Academy of Sciences and the Federal Space Agency.

With the Space Research Institute, the Higher School of Economics is planning to train specialists in two key areas: high-energy astrophysics and space plasma physics. This includes solar physics.

What the Universe Is Made of

Space plasma physics is a key area in the institute’s theoretical and experimental research. Space plasma appeared during the first moments of the birth of the universe after the Big Bang and is one of the most widespread states of matter in nature. Nearly 99% of matter in the universe is in a plasma state (not counting dark matter and dark energy, the nature of which is still unclear). That includes all stars, including the Sun, as well as the interstellar and interplanetary medium and even the upper layers of planet atmospheres. It is plasma processes in particular that control solar activity and its consequences – geomagnetic activity on Earth, also known as space weather. Research can be conducted on these processes with the help of long-distance spectral methods, optic telescopes, radio telescopes, outer-atmospheric X-rays, and gamma-observatories on space vehicles.

Staff from the space plasma division of the Space Research Institute have participated in work on practically all Soviet and Russian plasma- and planet-related projects. This includes Intercosmos; Cosmos; Prognoz; the automatic interplanetary stations Luna, Venera, Mars, and Fobos; and the space stations Salyut, Mir, the ISP, and others.

In their solar physics research, scientists from the Space Research Institute along with British colleagues from the University of Warwick won a grant from the British Council to study the seismology of the solar corona’s active regions. The researchers are planning to step closer towards a key objective in solar physics – assessing free magnetic energy in flare regions. This knowledge is necessary to evaluate the energy given off by flares, as well as their impact on the Earth and on space infrastructure. HSE students who choose to conduct research in this field will be able to participate in partner research projects and gain experience through international internships.

How Galaxies Evolve

The next field that will be developed at HSE thanks to the partnership with the Space Research Institute is high-energy astrophysics. Research in this area began at the institute in the early 1980s under the leadership of Yakov Zeldovich, one of the creators of relativistic astrophysics. This is a new area of science in which the theory of general relativity is applied to astrophysical objects.

Since the division first started within the Space Research Institute, the Russian Academy of Sciences, along with Russian and international partners, have carried out a number of astrophysics-centred projects to study the universe. This includes the Roentgen Orbital Observatory on MIR, the Granat Observatory, and the Integral Observatory. The Integral still operates and currently conducts hyperfine gamma spectroscopy on cosmic radiation and constructs images of the sky in an energy range between 15 keV and 10 MeV.

Other projects include the RTT150 Russian-Turkish 1.5-m Telescope, which is used to provide on-the-ground support to space projects in the field of high-energy astrophysics (INTEGRAL and in the future SPEKTR-RG). The objective is to build a map of the universe where all large galaxy cluster can be indicated, thus helping answer the question of how galaxies evolve. 

Lev Zelenyi, Director of the Space Research Institute of the Russian Academy of Sciences, Head of the Joint Department of Space Physics

Plans for the Future

‘There is one more prospective field that we are planning to develop – space navigation and ballistics,’ adds Lev Zelenyi, who is the Director of the Space Research Institute of the Russian Academy of Sciences and the Head of the Joint Department of Space Physics. ‘What is necessary in this field is an excellent knowledge of mathematics, which the Higher School of Economics is famous for, as it now has one of the best mathematics faculties in the country. And we want to achieve the same results in physics.’

With the discovery of gravitational waves, scientists have gotten another channel with which to learn more about the universe. It is in this field in particular, as well as in cosmology (a science that studies the formation of the solar system), where interesting discoveries will be made in the years ahead, Professor Zelenyi says.

A Special Environment

‘One can do nothing but envy the students who will come study this since the amount of research is clearly growing in the field of astronomy, astrophysics, and planetary physics. Because of this, HSE is certainly making the right decision in opening a physics faculty right now, and I think that with time it will become one of the institute’s adornments,’ Mr Zelenyi notes.

‘The master’s students who are joining us this year are headed for specific instructors, as they already know what they want to do,’ adds Maksim Dolgonosov, Deputy Head of the Joint Department of Space Physics and Senior Researcher with the Space Research Institute. ‘We are happy with the way our relationship is unfolding with HSE. For us this represents an opportunity to supply our organisations with more young and qualified staff. After all, you need a special environment in order to produce a researcher who has the skills to conduct his or her own future work independently and one with a well developed scientific view of the world. This environment has to be flexible, responsive, and capable of sensitively reacting to changes. It also has to factor in the interests of both students and scientific organisations. This is precisely the atmosphere we are going to create with HSE. We already have examples of our close partnership with the school. We won a grant to invite a foreign researcher to the school thanks to the HSE Teaching Excellence Initiative, and we organised a lecture series by University of Warwick Professor Valery Nakariakov. He lectured on solar physics, and we invited future HSE master’s students to attend.’

According to one of the applicants to the faculty’s master’s programme, Evgeny Belezyorov, he became familiarised with HSE during one of the university’s summer school in physics for those applying to the master’s programme. It was during this time that Evgeny met the faculty’s Deputy Dean Alexander Kostinskiy.

‘I was interested in solar physics, which is why I chose the space physics department and met with Maksim Dolgonosov, who is responsible for the Space Research Institute’s work with students. He showed me the laboratories and introduced me to some researchers with the institute. Before that I had visited other universities, but no one really struck up a conversation with me there, while I got a different impression here. Today I stopped by the department to talk with Ivan Zimovets, who I hope will one day be my academic supervisor.’

 

See also:

Russian Scientists Pioneer Accurate Mathematical Description of Quantum Dicke Battery

Physicists at HSE University and NUST MISIS have formulated and solved equations for a quantum battery, a device capable of storing energy in the form of light. Their findings will facilitate precise calculations of the capacity, power, and duration required for optimal battery charging. Quantum batteries are expected to improve the performance of solar panels and electric vehicles, while also opening up new avenues for efficient energy transfer. The study has been published in Physical Review A.

Scientists Harness 'Liquid Light' to Induce Electric Current in Superconductors

Scientists at HSE MIEM have induced a superconducting current using 'liquid light,' or excitonic polaritons, which are hybrid particles formed by interaction between light and matter and possess the properties of both light and material particles. The ability to manipulate an electrical system through an optical one can be valuable in the development of technologies such as quantum computers. The study has been published in Physical Review B.

Physicists Explain Transition Between Different Types of Superconductivity

Physicists from HSE MIEM in collaboration with colleagues from MIPT and other universities have formulated a theory capable of explaining the transition between different superconductivity types, revealing an intertype regime characterised by exotic magnetic properties. This discovery can serve as the foundation for the development of sensors with enhanced sensitivity and accuracy, capable of functioning in conditions where traditional sensors are less effective. The study has been published in Communications Physics.

'Unconventional Thinking Can Be Cultivated through Competitions Like Physics Tournaments'

Last week, university students from all over the country came to HSE University for the All-Russian Student's Tournament of Physicists. The tournament took the form of battles in which teams tackled physics problems while taking turns in the roles of speakers, opponents, and reviewers. Based on the competition results, the combined team 'Volume Dependence' emerged as the winner and will participate in the upcoming international tournament in Zurich.

HSE University to Host All-Russian Student's Tournament of Physicists for the First Time

The All-Russian Student's Tournament of Physicists is a competition in which teams of students from different universities offer their solutions to problems and defend them before rival teams. The HSE University Faculty of Physics traditionally participates in the organisation of the competition and task development. This year, on February 13–17, the tournament will be held at HSE University for the first time. It will include two rounds—the qualifiers and the final. In the final round, three teams and their captains will compete with each other.

Lavsan and Kapton Tested Under Space-like Radiation Conditions

In a ground-breaking experiment, HSE MIEM researchers subjected Lavsan (polyethylene terepfthalate, polyester) and Kapton (polypiromellitimide, polyimide) polymers, commonly used in space technology, to ionising radiation for durations ranging from microseconds to several hours at temperatures of -170°C and +20°C, while comparing their electrical conductivity under extreme conditions. The study reveals that at -170°C, Kapton's conductivity is ten times lower than at +20°C. These findings can assist engineers in developing more effective protection for spacecraft against static discharges induced by ionising radiation. The study has been published in Journal of Applied Physics.

Human Bodies Impede 6G Signal Transmission

A team of researchers, including scientists from HSE University, have investigated the influence of human movement on the propagation of 6G signals. Within a range of up to 10 metres, the signal attenuation is comparatively minor, yet brief connection failures may still occur. Based on the study findings, a blockage detection algorithm has been developed to account for both signal attenuation and interruptions. The gaming industry is likely to derive the greatest benefits from this discovery. A paper with the study findings has been published in Computer Communications.

Microlasers with Quantum Dots Remain Functional at Elevated Temperatures

Researchers from the HSE International Laboratory of Quantum Optoelectronics in St Petersburg have explored the impact of resonator size on the operating temperature of a microdisk laser with quantum dots in a two-level generation mode. Their findings reveal that microlasers can produce radiation across multiple frequencies, even under elevated temperatures. In the future, this breakthrough will enable the integration of microlasers into photonic circuits, potentially doubling information transmission capabilities. The study findings have been published in Nanomaterials.

Russian Researchers ‘Peek Inside’ Carbon Nanopores

Researchers from HSE MIEM, in collaboration with colleagues at the RAS Institute of Solution Chemistry, have modelled the behaviour of ionic liquids within charged carbon nanopores ranging in width from 1 to 15 nm and assessed the mobility of both their cations and anions. The scientists observed that an increase in anion size resulted in higher mobility, whereas cations exhibited the opposite trend of reduced mobility with an increase in size. A better understanding of ionic liquids will enhance their use in supercapacitor technology. The study has been published in Journal of Molecular Liquids and supported by a grant from the Russian Science Foundation (RSF).

'We Can Modify Electron Spins as Required by Applying an External Magnetic Field'

Researchers from HSE, MIPT, and the Russian Academy of Sciences Institute of Solid State Physics, jointly with colleagues from the UK, Switzerland, and China, have conducted a study on the characteristics of thin films composed of platinum and niobium. Both the experiments and the theoretical calculations have confirmed that when in contact with a superconductor, platinum exhibits a spin, creating a potential for its effective use for data transmission. Platinum atoms have no magnetic moment, paving the way for the development of even smaller chips utilising this novel structure compared to conventional spintronics. The paper has been published in Nature Communications.