• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
  • HSE University
  • News
  • Statistical Physics Can Help Uncover the Impact of Media on Decision Making

Statistical Physics Can Help Uncover the Impact of Media on Decision Making

Statistical Physics Can Help Uncover the Impact of Media on Decision Making

© iStock

Students and researchers from HSE University and the Landau Institute for Theoretical Physics have examined the widely known ‘Prisoner’s Dilemma’ game using methods from statistical physics. They used the mean-field concept, a common tool for studying the physics of many-particle systems, to describe human decision-making processes. Researchers suggest that this model may be helpful for understanding systems with many participants. The results of the study are published in the September issue of the Physics Review Research journal.

The paper’s authors looked at the spatial variation of the ‘Prisoner’s Dilemma’ game—the Nowak-May game—from a new perspective. In particular, they included statistical physics methods in the game’s rules. ‘In the classic version of the dilemma, there are two “players.” We used a modified version with a large number of agents,’ said Lev Shchur, Professor, Department Head and Chief Research Fellow at MIEM HSE.

The game is played with participants’ ‘nearest neighbours’, just like communicating with family and co-workers in real life. The players’ individual opinions sum up to a kind of average opinion, which in the suggested model directly impacts the decisions made by the players. Then an individual’s behaviour is determined by this ‘mean-field,’ formed by the behaviour of all individuals in the population. This construction is successfully used in statistical physics, which studies the emergent behaviour of large numbers of interacting particles.

The main feature of the model is that it considers both the structure of the population and the mean-field impact. The authors believe that the model might play a key role in the study of social systems. For example, in the paper, the presence of a mean-field is interpreted as the media’s impact on personal decisions, something that previous models of this kind haven’t considered.

It has been established that the spatial version of the Prisoner’s Dilemma game features sharp transitions between different steady states. The authors find that the new approach allows for a smoothening of these transitions. This is the first indication of the co-existence of two types of transitions—sharp and smooth—in deterministic systems.

The scholars believe that this model may help understand how systems with large numbers of participants behave or how the media impacts individual choices.

Evgeni Burovski, Associate Professor at the HSE School of Applied Mathematics

We have obtained some exciting results. In classical evolutionary game models, Darwinian processes are described in terms of well-mixed populations, and the information on the structure of the population is lost. We are suggesting an alternative approach — games both with a local neighbourhood and the self-consistent mean-field opinion. This approach helps consider the impact on decision making that the closest environment (colleagues and friends) has, as well as the things that people hear or read in the news.

The suggested approach can be applied to a broad class of spatial evolutionary games with both deterministic and stochastic rules. Given the interdisciplinary nature of the study, the researchers hope to collaborate with their colleagues working in sociology and economics to further develop and apply the model in trials.

See also:

Russian Scientists Pioneer Accurate Mathematical Description of Quantum Dicke Battery

Physicists at HSE University and NUST MISIS have formulated and solved equations for a quantum battery, a device capable of storing energy in the form of light. Their findings will facilitate precise calculations of the capacity, power, and duration required for optimal battery charging. Quantum batteries are expected to improve the performance of solar panels and electric vehicles, while also opening up new avenues for efficient energy transfer. The study has been published in Physical Review A.

Scientists Harness 'Liquid Light' to Induce Electric Current in Superconductors

Scientists at HSE MIEM have induced a superconducting current using 'liquid light,' or excitonic polaritons, which are hybrid particles formed by interaction between light and matter and possess the properties of both light and material particles. The ability to manipulate an electrical system through an optical one can be valuable in the development of technologies such as quantum computers. The study has been published in Physical Review B.

Physicists Explain Transition Between Different Types of Superconductivity

Physicists from HSE MIEM in collaboration with colleagues from MIPT and other universities have formulated a theory capable of explaining the transition between different superconductivity types, revealing an intertype regime characterised by exotic magnetic properties. This discovery can serve as the foundation for the development of sensors with enhanced sensitivity and accuracy, capable of functioning in conditions where traditional sensors are less effective. The study has been published in Communications Physics.

'Unconventional Thinking Can Be Cultivated through Competitions Like Physics Tournaments'

Last week, university students from all over the country came to HSE University for the All-Russian Student's Tournament of Physicists. The tournament took the form of battles in which teams tackled physics problems while taking turns in the roles of speakers, opponents, and reviewers. Based on the competition results, the combined team 'Volume Dependence' emerged as the winner and will participate in the upcoming international tournament in Zurich.

HSE University to Host All-Russian Student's Tournament of Physicists for the First Time

The All-Russian Student's Tournament of Physicists is a competition in which teams of students from different universities offer their solutions to problems and defend them before rival teams. The HSE University Faculty of Physics traditionally participates in the organisation of the competition and task development. This year, on February 13–17, the tournament will be held at HSE University for the first time. It will include two rounds—the qualifiers and the final. In the final round, three teams and their captains will compete with each other.

Lavsan and Kapton Tested Under Space-like Radiation Conditions

In a ground-breaking experiment, HSE MIEM researchers subjected Lavsan (polyethylene terepfthalate, polyester) and Kapton (polypiromellitimide, polyimide) polymers, commonly used in space technology, to ionising radiation for durations ranging from microseconds to several hours at temperatures of -170°C and +20°C, while comparing their electrical conductivity under extreme conditions. The study reveals that at -170°C, Kapton's conductivity is ten times lower than at +20°C. These findings can assist engineers in developing more effective protection for spacecraft against static discharges induced by ionising radiation. The study has been published in Journal of Applied Physics.

Human Bodies Impede 6G Signal Transmission

A team of researchers, including scientists from HSE University, have investigated the influence of human movement on the propagation of 6G signals. Within a range of up to 10 metres, the signal attenuation is comparatively minor, yet brief connection failures may still occur. Based on the study findings, a blockage detection algorithm has been developed to account for both signal attenuation and interruptions. The gaming industry is likely to derive the greatest benefits from this discovery. A paper with the study findings has been published in Computer Communications.

Learning the Right Approach: Sabanci University Professor Teaches Mini-Course at HSE Faculty of Computer Science

From December 5–13, HSE University hosted a mini-course in Decision Making led by Enes Eryarsoy from Sabanci University, Turkey. The course was attended by students of the Faculty of Economics, the Faculty of Economic Sciences, the Graduate School of Business and other departments of HSE University.

Microlasers with Quantum Dots Remain Functional at Elevated Temperatures

Researchers from the HSE International Laboratory of Quantum Optoelectronics in St Petersburg have explored the impact of resonator size on the operating temperature of a microdisk laser with quantum dots in a two-level generation mode. Their findings reveal that microlasers can produce radiation across multiple frequencies, even under elevated temperatures. In the future, this breakthrough will enable the integration of microlasers into photonic circuits, potentially doubling information transmission capabilities. The study findings have been published in Nanomaterials.

Russian Researchers ‘Peek Inside’ Carbon Nanopores

Researchers from HSE MIEM, in collaboration with colleagues at the RAS Institute of Solution Chemistry, have modelled the behaviour of ionic liquids within charged carbon nanopores ranging in width from 1 to 15 nm and assessed the mobility of both their cations and anions. The scientists observed that an increase in anion size resulted in higher mobility, whereas cations exhibited the opposite trend of reduced mobility with an increase in size. A better understanding of ionic liquids will enhance their use in supercapacitor technology. The study has been published in Journal of Molecular Liquids and supported by a grant from the Russian Science Foundation (RSF).