• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Adhesive Tape Helps Create Innovative THz Photodetector

Adhesive Tape Helps Create Innovative THz Photodetector

© iStock

It is 10,000 times thinner than a sheet of paper and has been inspired by the discovery made by Nobel Prize winners Andre Geim and Konstantin Novoselov.

An international team of researchers, including scientists at HSE University and Moscow Pedagogical State University (MPGU), has developed a novel photodetector composed of a thin superconducting film, capable of detecting weak terahertz (THz) radiation. This discovery holds promise for studying objects in space, developing wireless broadband communication systems, and making advancements in spectroscopy. The study has been published in Nano Letters.

The study was conducted with support from the Russian Science Foundation (RSF), Projects No. 21-72-10117 and No. 23-72-00014.

Superconducting Hot-Electron Bolometers are a type of highly sensitive photodetectors capable of capturing low-intensity electromagnetic radiation in the terahertz range. These detectors find application in astronomy for studying space objects such as stars, galaxies, and cosmic microwave radiation. Additionally, they are sought after in security and medical diagnostic systems, as they facilitate the visualisation of concealed objects with resolutions reaching hundreds of micrometres. 

When the photosensitive element of such a detector absorbs electromagnetic radiation, it undergoes local heating, leading to the formation of thermalised electrons with kinetic energy surpassing the material's average electron energy. The emergence of overheated electrons causes a shift in the resistance of the photosensitive element, thereby generating an electrical signal that can be measured.

Current commercial superconducting bolometers employing overheated electrons are manufactured using films produced through magnetron sputtering techniques. This technology presently lacks the capability to produce materials thinner than a few nanometres, whereas the detector's performance is directly influenced by the deposition quality.

An international team of researchers, including scientists at MIEM HSE, have proposed using a thinner material and an alternative method for applying the detector’s photosensitive element. Taking inspiration from Nobel Prize winners Andre Geim and Konstantin Novoselov, who produced graphene by repeatedly cleaving graphite with adhesive tape, the study authors successfully obtained ultrathin films of niobium diselenide (NbSe2) by delaminating atomic layers from the material using polymer adhesive tape.

Igor Gayduchenko

Igor Gaiduchenko

Research Fellow, MIEM HSE

We worked as part of a large international collaboration consisting of specialists in photodetectors and experts in two-dimensional materials. We pooled our expertise to develop a sensitive and compact terahertz radiation detector with a thickness of just a few atomic layers of niobium diselenide, which is 10,000 times thinner than a standard sheet of office paper. Furthermore, this technology enables us to obtain materials with an optimal structure. It is easy to apply and does not require specialised equipment.

The authors also investigated the reaction of NbSe2 to THz radiation. They examined how the material heats up upon exposure to an electromagnetic wave and how the detector's properties vary depending on its environment—the substrate and electrodes—given that two-dimensional materials are sensitive to their surroundings. The scientists have also identified the mechanisms that constrain the sensitivity and speed of the detector.

The scientists emphasise that their pioneering work to develop a bolometric THz radiation detector demonstrates the potential for such a device to eventually surpass existing commercial solutions.

Kirill Shein

Kirill Shein

Doctoral student and Research Fellow, MIEM HSE

We have demonstrated that using the proposed technology makes it possible to manufacture a bolometric THz radiation detector with characteristics similar to those of existing commercial counterparts.

See also:

Esports Players Play Better Online

In competitions, esports players, like other athletes, face stress and show worse results due to pressure. A substantial decrease takes place in the performance of esports players during overtime. This effect, however, is significantly mitigated in online competitions compared to live events—the difference can reach 30%. A study by a team of authors from HSE University’s Moscow and Perm campuses and European University Viadrina (Germany) explores the phenomenon of choking under pressure within the context of esports. The study was published in the Journal of Economic Behavior & Organization.

Analysing Genetic Information Can Help Prevent Complications after Myocardial Infarction

Researchers at HSE University have developed a machine learning (ML) model capable of predicting the risk of complications—major adverse cardiac events—in patients following a myocardial infarction. For the first time, the model incorporates genetic data, enabling a more accurate assessment of the risk of long-term complications. The study has been published in Frontiers in Medicine.

A New Tool Designed to Assess AI Ethics in Medicine Developed at HSE University

A team of researchers at the HSE AI Research Centre has created an index to evaluate the ethical standards of artificial intelligence (AI) systems used in medicine. This tool is designed to minimise potential risks and promote safer development and implementation of AI technologies in medical practice.

Smoking Habit Affects Response to False Feedback

A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.

Russian Physicists Determine Indices Enabling Prediction of Laser Behaviour

Russian scientists, including researchers at HSE University, examined the features of fibre laser generation and identified universal critical indices for calculating their characteristics and operating regimes. The study findings will help predict and optimise laser parameters for high-speed communication systems, spectroscopy, and other areas of optical technology. The paper has been published in Optics & Laser Technology.

Children with Autism Process Auditory Information Differently

A team of scientists, including researchers from the HSE Centre for Language and Brain, examined specific aspects of auditory perception in children with autism. The scientists observed atypical alpha rhythm activity both during sound perception and at rest. This suggests that these children experience abnormalities in the early stages of sound processing in the brain's auditory cortex. Over time, these abnormalities can result in language difficulties. The study findings have been published in Brain Structure and Function.

Smartphones Not Used for Digital Learning among Russian School Students

Despite the widespread use of smartphones, teachers have not fully integrated them into the teaching and learning process, including for developing students' digital skills. Irina Dvoretskaya, Research Fellow at the HSE Institute of Education, has examined the patterns of mobile device use for learning among students in grades 9 to 11.

Working while Studying Can Increase Salary and Chances of Success

Research shows that working while studying increases the likelihood of employment after graduation by 19% and boosts salary by 14%. One in two students has worked for at least a month while studying full time. The greatest benefits come from being employed during the final years of study, when students have the opportunity to begin working in their chosen field. These findings come from a team of authors at the HSE Faculty of Economic Sciences.

Beauty in Details: HSE University and AIRI Scientists Develop a Method for High-Quality Image Editing

Researchers from theHSE AI Research Centre, AIRI, and the University of Bremen have developed a new image editing method based on deep learning—StyleFeatureEditor. This tool allows for precise reproduction of even the smallest details in an image while preserving them during the editing process. With its help, users can easily change hair colour or facial expressions without sacrificing image quality. The results of this three-party collaboration were published at the highly-cited computer vision conference CVPR 2024.

HSE Scientists Have Examined Potential Impact of Nuclear Power on Sustainable Development

Researchers at HSE University have developed a set of mathematical models to predict the impact of nuclear power on the Sustainable Development Index. If the share of nuclear power in the global energy mix increases to between 20% and 25%, the global Sustainable Development Index (SDI) is projected to grow by one-third by 2050. In scenarios where the share of nuclear power grows more slowly, the increase in the SDI is found to be lower. The study has been published in Nuclear Energy and Technology.