• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
2018, January
1Mo2Tu3We4Th5Fr6Sa7Su8Mo9Tu10We11Th12Fr13Sa14Su15Mo16Tu17We18Th19Fr20Sa21Su22Mo23Tu24We25Th26Fr27Sa28Su29Mo30Tu31We
2018, February
1Th2Fr3Sa4Su5Mo6Tu7We8Th9Fr10Sa11Su12Mo13Tu14We15Th16Fr17Sa18Su19Mo20Tu21We22Th23Fr24Sa25Su26Mo27Tu28We
2018, March
1Th2Fr3Sa4Su5Mo6Tu7We8Th9Fr10Sa11Su12Mo13Tu14We15Th16Fr17Sa18Su19Mo20Tu21We22Th23Fr24Sa25Su26Mo27Tu28We29Th30Fr31Sa
2018, August
1We2Th3Fr4Sa5Su6Mo7Tu8We9Th10Fr11Sa12Su13Mo14Tu15We16Th17Fr18Sa19Su20Mo21Tu22We23Th24Fr25Sa26Su27Mo28Tu29We30Th31Fr
2018, September
1Sa2Su3Mo4Tu5We6Th7Fr8Sa9Su10Mo11Tu12We13Th14Fr15Sa16Su17Mo18Tu

Window into the Brain: HSE Researchers Are Developing a New Generation of MEG Devices

In collaboration with scientists from the Ioffe Institute, HSE researchers have developed an ultra-sensitive atomic magnetometric scheme with a sensitivity of 5 fTl×Hz-1/2, setting a performance record for sensors operating in the Earth's magnetic field. The scheme will be used to design a multichannel atomic magnetoencephalograph, expected to be the most accurate and compact device available today for non-invasive measurement of the brain's electrical activity.