Russian Scientists Demonstrate How Disorder Contributes to Emergence of Unusual Superconductivity
Researchers at HSE University and MIPT have investigated how the composition of electrons in a superconductor influences the emergence of intertype superconductivity—a unique state in which superconductors display unusual properties. It was previously believed that intertype superconductivity occurs only in materials with minimal impurities. However, the scientists discovered that the region of intertype superconductivity not only persists but can also expand in materials with a high concentration of impurities and defects. In the future, these superconductors could contribute to the development of highly sensitive sensors and detectors. The study has been published in Frontiers of Physics.
In ordinary materials, there is always at least some resistance, a property that hinders the flow of electric current and results in energy loss. However, certain materials, when cooled to extremely low temperatures, transition into a state where resistance is entirely eliminated. This state is known as superconductivity, and the materials exhibiting it are called superconductors.
When a material enters a superconducting state, it completely expels external magnetic fields, such as those generated by electromagnets or current-carrying conductors. However, if the external magnetic field becomes too strong, the superconductor loses its properties and reverts to its normal state.
Superconductors are traditionally classified into two types. Their classification into type I or type II depends on the material's behaviour in a magnetic field and the value of the Ginzburg–Landau parameter, which, in turn, depends on the material's characteristics as well as the presence of impurities and defects. If it is below a certain value, the material is classified as a type I superconductor; if it is above that value, it is classified as a type II superconductor. In type I superconductors, the magnetic field is expelled from the material until its intensity reaches a critical value. After that, the field penetrates the material, and superconductivity is lost. In type II superconductors, the situation is different: the magnetic field begins to penetrate once the field strength exceeds a minimum threshold, but superconductivity is maintained. The field penetrates in the form of vortices—narrow current-carrying tubes, within which a magnetic field is present. These vortices form an ordered lattice structure.
However, there is a narrow region around the critical value of the Ginzburg–Landau parameter where superconductivity exhibits intermediate properties between type I and type II. This state is known as intertype superconductivity. Unusual magnetic field configurations differing from lattices arise in this state, including vortex clusters, chains, and giant vortices, which give rise to new magnetic properties distinct from the classical ones.
Initially, intertype superconductivity was observed only in pure superconductors with minimal impurities. However, a recent study by scientists at the HSE MIEM Centre for Quantum Metamaterials and the MIPT Centre for Advanced Methods of Mesophysics and Nanotechnology revealed that the region of intertype superconductivity is maintained in superconductors with a high concentration of impurities and defects. This is possible in multiband superconductors, where multiple 'types' of electrons with different properties coexist. Electrons from different energy bands respond differently to impurities: some are more affected, while others are less so. Moreover, the extent of interaction with impurities can be controlled, for instance, by irradiating the material with ions, which allows for the expansion of the intertype superconductivity region.
The scientists' findings contribute to the current understanding of superconductivity types and how their properties change under different conditions. This is crucial for the effective use of superconductors in cables and high-power magnets, as the current and magnetic properties of a superconductor depend on its type. It is also valuable for the development of new, highly sensitive devices.
'The study broadens our understanding of superconductivity and the classical classification of superconductors, which has been around for about 70 years. We have shown that the combination of disorder and multiband effects fundamentally alters the properties of superconductors and opens up the possibility of exploring rare and exotic superconducting states. Since the magnetic field configurations in intertype superconductivity are sensitive to temperature and current parameters, such superconductors could be used in highly sensitive sensors and detectors in the future,' according to Pavel Marychev, Research Fellow at the HSE Centre for Quantum Metamaterials.
See also:
Russian Scientists Develop New Compound for Treating Aggressive Tumours
A team of Russian researchers has synthesised a novel compound for boron neutron capture therapy (BNCT), a treatment for advanced cancer that uses the boron-10 isotope. The compound exhibits low toxicity, excellent water solubility, and eliminates the need for administering large volumes. Most importantly, the active substance reaches the tumour with minimal impact on healthy tissues. The study was published in the International Journal of Molecular Sciences shortly before World Cancer Day, observed annually on February 4.
Scientists Discover Link Between Brain's Structural Features and Autistic Traits in Children
Scientists have discovered significant structural differences in the brain's pathways, tracts, and thalamus between children with autism and their neurotypical peers, despite finding no functional differences. The most significant alterations were found in the pathways connecting the thalamus—the brain's sensory information processing centre—to the temporal lobe. Moreover, the severity of these alterations positively correlated with the intensity of the child's autistic traits. The study findings have been published in Behavioural Brain Research.
Earnings Inequality Declining in Russia
Earnings inequality in Russia has nearly halved over the past 25 years. The primary factors driving this trend are rising minimum wages, regional economic convergence, and shifts in the returns on education. Since 2019, a new phase of this process has been observed, with inequality continuing to decline but driven by entirely different mechanisms. These are the findings made by Anna Lukyanova, Assistant Professor at the HSE Faculty of Economic Sciences, in her new study. The results have been published in the Journal of the New Economic Association.
Russian Physicists Discover Method to Increase Number of Atoms in Quantum Sensors
Physicists from the Institute of Spectroscopy of the Russian Academy of Sciences and HSE University have successfully trapped rubidium-87 atoms for over four seconds. Their method can help improve the accuracy of quantum sensors, where both the number of trapped atoms and the trapping time are crucial. Such quantum systems are used to study dark matter, refine navigation systems, and aid in mineral exploration. The study findings have been published in the Journal of Experimental and Theoretical Physics Letters.
HSE Scientists Develop Application for Diagnosing Aphasia
Specialists at the HSE Centre for Language and Brain have developed an application for diagnosing language disorders (aphasia), which can result from head injuries, strokes, or other neurological conditions. AutoRAT is the first standardised digital tool in Russia for assessing the presence and severity of language disorders. The application is available on RuStore and can be used on mobile and tablet devices running the Android operating system.
HSE Researchers Discover Simple and Reliable Way to Understand How People Perceive Taste
A team of scientists from the HSE Centre for Cognition & Decision Making has studied how food flavours affect brain activity, facial muscles, and emotions. Using near-infrared spectroscopy (fNIRS), they demonstrated that pleasant food activates brain areas associated with positive emotions, while neutral food stimulates regions linked to negative emotions and avoidance. This approach offers a simpler way to predict the market success of products and study eating disorders. The study was published in the journal Food Quality and Preference.
HSE Scientists Take Important Step Forward in Development of 6G Communication Technologies
Researchers at HSE MIEM have successfully demonstrated the effective operation of a 6G wireless communication channel at sub-THz frequencies. The device transmits data at 12 Gbps and maintains signal stability by automatically switching when blocked. These metrics comply with international 6G standards. An article published on arXiv, an open-access electronic repository, provides a description of certain elements of the system.
AI vs AI: Scientists Develop Neural Networks to Detect Generated Text Insertions
A research team, including Alexander Shirnin from HSE University, has developed two models designed to detect AI-generated insertions in scientific texts. The AIpom system integrates two types of models: a decoder and an encoder. The Papilusion system is designed to detect modifications through synonyms and summarisation by neural networks, using one type of models: encoders. In the future, these models will assist in verifying the originality and credibility of scientific publications. Articles describing the Papilusion and AIpom systems have been published in the ACL Anthology Digital Archive.
Acoustic Battles for the Harem: How the Calls of Siberian Wapiti Reveal Their Status and Individuality
Researchers at HSE University, Lomonosov Moscow State University, and the A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences have studied the distinctive vocalisations of Siberian wapiti (Cervus canadensis sibiricus) stags during the peak of the mating season, when males produce rutting calls (bugles) to attract females (hinds) and deter rivals. The scientists have discovered how the acoustic parameters of these rutting calls reflect the stag's status—whether he currently holds a harem or is still attempting to acquire one—as well as his individual characteristics. The study has been published in Journal of Zoology.
Z-Flipons: How Specific DNA Regions Help Regulate Gene Function
Researchers at HSE University and InsideOutBio have applied machine learning to identify the location and functions of mirror-twisted DNA structures, known as Z-flipons, in human and mouse genomes. The scientists discovered which Z-DNA regions were conserved in both species throughout evolution and demonstrated for the first time that Z-DNA accelerates the process of creating RNA copies of genes. The findings will contribute to the development of new treatments for genetic diseases. The study has been published in Scientific Reports.