• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Magnetic Impulses Help Create Muscle Activity Maps to Diagnose Motor Disorders

Magnetic Impulses Help Create Muscle Activity Maps to Diagnose Motor Disorders

© iStock

Using transcranial magnetic stimulation, Russians scientists were able to precisely track inter-muscle interactions between cortical representations of arm muscles. In the future, this method will help track brain changes in patients with motor disorders. The study was published in Human Brain Mapping. The project was supported by the Presidential Programme of the Russian Science Foundation (RSF).

Today, transcranial magnetic stimulation is actively used in psychiatry and neurology to treat depression, pain, and other conditions. But the method is still underused for the assessment of the motor cortex and musculoskeletal conditions in different disorders, exercise, or rehabilitation.

Russian researchers examined the reliability of motor mapping with the use of this method. The scholars managed to precisely track inter-muscle interactions between cortical representations of arm muscles. In the future, this will help track brain changes in patients with motor disorders.

Transcranial magnetic stimulation (TMS) helps doctors and researchers activate the human cortex with short magnetic impulses. Today, this method is used in psychiatry and neurology to treat, for example, such conditions as depression, pain, Parkinson’s disease and many disorders. In addition, TMS looks quite promising in terms of brain research and its functional mapping — the creation of brain maps. Combining TMS with MRI navigation is particularly effective. This method is called navigated TMS or nTMS. For some tasks, it is more precise than other brain mapping methods, such as functional MRI. In nTMS, the motor cortex is stimulated. This leads to muscle contractions, which are assessed by researchers who register muscle electric activity. The spatial accuracy of nTMS mapping may be as small as two millimeters, and its results are called muscle cortical representation (MCR) or a TMS motor map. This approach may be used to assess motor cortex changes in different disorders, exercise, or rehabilitation.

Arm muscle cortical representation in volunteers after two days of research
Source: Maria Nazarova et al. / Human brain mapping, 2021

Despite the advantages of nTMS mapping, in practice this method is rarely used. Further confirmation of data received with this method is needed. This issue was tackled by Russian researchers of the Centre for Cognition & Decision Making of HSE University’s Institute for Cognitive Neuroscience, the Research Centre of Neurology, and the Federal Centre of Brain Research and Neurotechnologies. They carried out a study of the absolute and comparative reliability of mapping data (muscle cortical representations) of arm muscles. For this purpose, they invited healthy male volunteers aged 19 to 33. None of them had any neurological or mental disorders; the scholars also excluded athletes, musicians, and surgeons, since they are likely to have highly precise motor function due to their work.

The volunteers participated in two nTMS mapping sessions separated by 5-10 days. The researchers registered contractions of three muscles that control the movement of hand and fingers. This way, they received TMS muscle cortical representations. Reliability analysis showed that the commonly used metrics, such as areas, volumes, and centres of gravity had a high relative and low absolute reliability for the muscles. The former assesses the results of repeated measurements, while the latter tracks the change of data in one participant. Overlaps between different muscle MCRs were highly reliable, which allowed the researchers to track the interactions between these maps.

Maria Nazarova

‘Our study is important not only for fundamental science. It also opens new opportunities for the use of nTMS motor mapping to evaluate cortical changes in healthy people and patients with neurological conditions, such as those who are undergoing rehabilitation after a stroke,’ said Maria Nazarova, head of the RSF grant project, Candidate of Science (Medicine), and researcher of the Centre for Cognition & Decision Making (Institute for Cognitive Neuroscience, HSE University) and the Federal Centre of Brain Research and Neurotechnologies.

See also:

What Can Make Robots More Human-like?

What is affect and why is it important for humans? How can feelings be defined and what is their relation to emotions and consciousness? What might be used in making a soft robot? Professor Antonio Damasio (University of Southern California, USA) discussed these and other questions in his honorary lecture, entitled 'Feeling, Knowing, and Artificial Intelligence'.The talk was delivered on April 16 at the at the XXII April International Academic Conference held by HSE University jointly with Sberbank.

‘In the Blink of an Eye’ Statistics: People Estimate Size of the Set of Objects Based on Distance to Them

HSE University researchers Yuri Markov and Natalia Tiurina discovered that when people visually estimate the size of objects, they are also able to consider their distance from the observer, even if there are many such objects. The observers rely not only on the objects’ retinal representation, but also on the surrounding context. The paper was published in the journal Acta Psychologica.

Can the Brain Resist the Group Opinion?

Scientists at HSE University have learned that disagreeing with the opinion of other people leaves a ‘trace’ in brain activity, which allows the brain to later adjust its opinion in favour of the majority-held point of view. The article was published in Scientific Reports.

Researchers Expand the Capabilities of Magnetoencephalography

Researchers from the HSE Institute for Cognitive Neuroscience have proposed a new method to process magnetoencephalography (MEG) data, which helps find cortical activation areas with higher precision. The method can be used in both basic research and clinical practice to diagnose a wide range of neurological disorders and to prepare patients for brain surgery. The paper describing the algorithm was published in the journal NeuroImage.

How Modern Robots Are Developed

Today, neuroscience and robotics are developing hand in hand. Mikhail Lebedev, Academic Supervisor at HSE University’s Centre for Bioelectric Interfaces, spoke about how studying the brain inspires the development of robots.

Movement Recovery after Stroke Depends on the Integrity of Connections between the Cerebral Cortex and the Spinal Cord

A team of scientists, with the first author from the HSE University, were investigating which factors are the most important for the upper limb motor recovery after a stroke. The study is published in Stroke, the world's leading journal for cerebrovascular pathology.

Losing Money Multiple Times Causes Plastic Changes in the Brain

Researchers at the HSE Institute for Cognitive Neuroscience have shown experimentally that economic activity can actively change the brain. Signals that predict regular financial losses evoke plastic changes in the cortex. Therefore, these signals are processed by the brain more meticulously, which helps to identify such situations more accurately. The article was published in Scientific Reports.

The Shorter the Delay, the More Effective the Neurofeedback

HSE University scientists have for the first time in the world investigated the impact of delayed reinforcement signals in neurofeedback (NFB) training. They have experimentally proven that reducing the delay in feedback (decreasing feedback latency) can significantly increase the efficacy of training. 

HSE University Evaluated the Diagnostic Validity of the SARS Test

Researchers at the HSE University Centre for Language and Brain, in cooperation with a professor of neuropsychology from Lomonosov Moscow State University and specialists from the Centre for Speech Pathology and Neuro-rehabilitation, evaluated the diagnostic validity of the Standardized Assessment of Reading Skills in Russian (SARS) and checked whether the available normative data are current. The results of the study, the updated levels for reading speed, as well as the control levels for evaluating these indicators, were published in The Russian Journal of Cognitive Science. 

Russian Research Team Gains Deeper Insight into the Workings of the Human Brain during Group Problem Solving

A team of Russian researchers with the participation of a leading researcher at HSE University, Ekaterina Pechenkova, found that during group problem solving the components of the social brain are co-activated, but they do not increase their coupling during cooperation as would be suggested for a holistic network. The study was published in Frontiers in Human Neuroscience.