Pavel Alekseevich Saponov
- Professor:Faculty of Mathematics
- Pavel Alekseevich Saponov has been at HSE University since 2011.
Education and Degrees
According to the International Standard Classification of Education (ISCED) 2011, Candidate of Sciences belongs to ISCED level 8 - "doctoral or equivalent", together with PhD, DPhil, D.Lit, D.Sc, LL.D, Doctorate or similar. Candidate of Sciences allows its holders to reach the level of the Associate Professor.
A post-doctoral degree called Doctor of Sciences is given to reflect second advanced research qualifications or higher doctorates in ISCED 2011.
Courses (2023/2024)
Differential Equations (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 2 year, 1, 2 module)Rus
- Mathematical Foundations of Quantum Mechanics (Optional course (faculty); 1, 2 module)Rus
- Mechanics (Bachelor’s programme; Faculty of Mathematics; 3 year, 3, 4 module)Rus
- Mechanics (Bachelor’s programme; Faculty of Mathematics; 2 year, 3, 4 module)Rus
- Past Courses
Courses (2022/2023)
Differential Equations (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 2 year, 1, 2 module)Rus
- Research Seminar "Braid Group, Quantum Groups and Applications" (Optional course (faculty); 3, 4 module)Rus
- Research Seminar "Classical Field Theory" (Optional course (faculty); 3, 4 module)Rus
- Research Seminar "Mathematical Foundations of Quantum Mechanics" (Optional course (faculty); 1, 2 module)Rus
Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 3 year, 3, 4 module)Rus
- Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; 2 year, 3, 4 module)Rus
Courses (2021/2022)
- Braid Group, Quantum Groups and Applications (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 3 year, 1, 2 module)Rus
Differential Equations (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 2 year, 1, 2 module)Rus
- Research Seminar "Mathematical Foundations of Quantum Mechanics" (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; 3 year, 3, 4 module)Rus
- Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; 2 year, 3, 4 module)Rus
Courses (2020/2021)
- Classical Field Theory (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 3 year, 1, 2 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Mathematical Foundations of Quantum Mechanics (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Mathematics. Licenciatus (Bachelor’s programme; Faculty of Mathematics; 4 year, 1 module)Rus
- Mechanics (Bachelor’s programme; Faculty of Mathematics; 2 year, 3, 4 module)Rus
- Research Seminar "Braid Groups, Quantum Groups and Applications" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
Courses (2019/2020)
- Classical Field Theory (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Research Seminar "Braid Group, R-matrices, and Quantum Groups" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
- Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; 2 year, 4 module)Rus
Courses (2018/2019)
- Classical Field Theory (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Mathematics. Licenciatus (Bachelor’s programme; Faculty of Mathematics; 3 year, 4 module)Rus
- Research Seminar "Mechanics" (Bachelor’s programme; Faculty of Mathematics; 2 year, 4 module)Rus
- Research Seminar "Selcted Topics from Braid Group Theory and Qauntum Groups: Genesis and Applications of R-Matrices" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
Courses (2017/2018)
- Classical Field Theory (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Mathematical Practical Training 2 (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
- Mathematics Practical Training (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Mechanics (Bachelor’s programme; Faculty of Mathematics; 2 year, 4 module)Rus
- Research Seminar "The R-matrix: its Origin and Applications in the Braid Group Theory and in Quantum Groups" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
Publications28
- Article Gurevich D., Petrova V., Saponov P. A. Matrix Capelli identities related to Reflection Equation algebra // Journal of Geometry and Physics. 2022. Vol. 179. Article 104606. doi
- Article Gurevich D., Pavel Saponov. Quantum doubles of Fock type and bosonization // Journal of Geometry and Physics. 2022. Vol. 171. Article 104396. doi
- Article Gurevich D., Saponov P. A. Determinants in quantum matrix algebras and integrable systems // Theoretical and Mathematical Physics. 2021. Vol. 207. P. 626-639. doi
- Article Saponov P. A., Slinkin A., Gurevich D. Bethe subalgebras in Braided Yangians and Gaudin-type models // Communications in Mathematical Physics. 2020. Vol. 374. No. 2. P. 689-704. doi
- Article Gurevich D., P.A. Saponov. CENTERS OF GENERALIZED REFLECTION EQUATION ALGEBRAS // Theoretical and Mathematical Physics. 2020. Vol. 204. No. 3. P. 1130-1139. doi
- Article Saponov P. A., Gurevich D. Braided Yangians // Journal of Geometry and Physics. 2019. Vol. 138. P. 124-143. doi
- Article Gurevich D., Pavel Saponov, Talalaev D. KZ equations and Bethe subalgebras in generalized Yangians related to compatible R-matrices // Journal of Integrable Systems. 2019. Vol. 4. No. 1. P. xyz005. doi
- Article Gurevich D., Saponov P. A., Talalaev D. Drinfeld–Sokolov reduction in quantum algebras: canonical form of generating matrices // Letters in Mathematical Physics. 2018. Vol. 108. P. 2303-2314. doi
- Chapter Saponov P. A., Gurevich D. From Reflection Equation Algebra to Braided Yangians, in: Recent Developments in Integrable Systemsand Related Topics of Mathematical Physics Vol. 273. Springer, 2018. doi P. 107-129. doi
- Article Gurevich D., P.A. Saponov. Generalized Yangians and their Poisson counterparts // Theoretical and Mathematical Physics. 2017. Vol. 192. No. 3. P. 1243-1257. doi
- Article Gurevich D., Pavel Saponov. Derivatives in noncommutative calculus and deformation property of quantum algebras // Journal of Noncommutative Geometry. 2016. Vol. 10. No. 4. P. 1215-1241. doi
- Article Gurevich D., Saponov P. A. Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole // Journal of Geometry and Physics. 2016. Vol. 106. P. 87-97. doi
- Article Gurevich D., Rubtsov V., Saponov P. A., Skoda Z. Generalizations of Poisson Structures Related to Rational Gaudin Model // Annales Henri Poincare. A Journal of Theoretical and Mathematical Physics. 2015. Vol. 16. No. 7. P. 1689-1707.
- Article Pavel Saponov, Gurevich D. Noncommutative Geometry and dynamical models on U(u(2)) background // Journal of Generalized Lie Theory and Applications. 2015. Vol. 9. No. 1. P. 1000215.
- Preprint Pavel Saponov, Gurevich D. Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole / Cornell University Library. Series math.QA 1512.03495 "Quantum Algebra". 2015. No. 1512.03495.
- Article Gurevich D., Saponov P. A. Braided algebras and their applications to Noncommutative Geometry // Advances in Applied Mathematics. 2013. Vol. 51. P. 228-253. doi
- Article Pyatov P. N., Gurevich D., Saponov P. A. Braided Weyl algebras and differential calculus on U(u(2)) // Journal of Geometry and Physics. 2012. Vol. 62. No. 5. P. 1175-1188. doi
- Article Gurevich D., Saponov P. A., Pyatov P. N. Braided differential operators on quantum algebra // Journal of Geometry and Physics. 2011. Vol. 61. P. 1485-1501.
- Article Gurevich D., Pyatov P. N., Saponov P. A. Bilinear identities on Schur symmetric functions // Journal of Nonlinear Mathematical Physics. 2010. Vol. 17. No. supp01. P. 31-48. doi
- Article Saponov P. A., Gurevich D. Generic super-orbits in gl(m|n)* and their braided counterparts // Journal of Geometry and Physics. 2010. Vol. 60. No. 10. P. 1411-1423.
- Article Saponov P. A., Gurevich D. Wave operators on quantum algebras via noncanonical quantization // Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications. 2010. No. 109. P. 19-38.
- Article Saponov P. A., Gurevich D. Braided affine geometry and q-analogs of wave operators // Journal of Physics A: Mathematical and Theoretical. 2009. No. 42
- Article Gurevich D., Pyatov P. N., Saponov P. A. Representation theory of (modified) Reflection Equation Algebra of GL(m|n) type // St Petersburg Mathematical Journal. 2009. Vol. 20. P. 213-253.
- Article Gurevich D., Pyatov P. N., Saponov P. A. Spectral parameterization for power sums of a quantum supermatrix // Theoretical and Mathematical Physics. 2009. Vol. 159. P. 587-597.
- Article Gurevich D., Pyatov P. N., Saponov P. A. Reflection equation algebra in braided geometry // Journal of Generalized Lie Theory and Applications. 2008. Vol. 2. No. 3. P. 162-174.
- Article Gurevich D., Saponov P. A. Geometry of non-commtative orbits related to Hecke symmetries // Contemporary Mathematics Series. 2007. No. 433. P. 209-250.
- Article Pyatov P. N., Gurevich D., Saponov P. A. Hecke symmetries and characteristic relations on reflection equation algebra // Letters in Mathematical Physics. 1997. Vol. 41. P. 255-264.
- Article Pyatov P. N., Saponov P. A. Characteristic relations for quantum matrices // Journal of Physics A: Mathematical and Theoretical. 1995. Vol. 28. P. 4415-4421.