Nikita S. Markaryan
- Associate Professor:Faculty of Mathematics
- Research Fellow:Laboratory of Algebraic Geometry and Its Applications
- Nikita S. Markaryan has been at HSE University since 2010.
Education and Degrees
- 1999
Candidate of Sciences* (PhD) in Physical and Mathematical Sciences
Steklov Mathematical Institute of the Russian Academy of Sciences
Thesis Title: Projective structures and Hitchin equations - 1995
Degree
Independent University of Moscow
According to the International Standard Classification of Education (ISCED) 2011, Candidate of Sciences belongs to ISCED level 8 - "doctoral or equivalent", together with PhD, DPhil, D.Lit, D.Sc, LL.D, Doctorate or similar. Candidate of Sciences allows its holders to reach the level of the Associate Professor.
Courses (2021/2022)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-3 module)Rus
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
Introduction to Galois Theory (Master’s programme; Faculty of Mathematics; field of study "01.04.01. Математика", field of study "01.04.01. Математика"; 2 year, 1, 2 module)Eng
- Introduction to Galois Theory (Bachelor’s programme; Faculty of Mathematics; 3 year, 1, 2 module)Eng
Introduction to Galois Theory (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 4 year, 1, 2 module)Eng
Introduction to Galois Theory (Master’s programme; Faculty of Mathematics; field of study "01.04.01. Математика", field of study "01.04.01. Математика"; 1 year, 1, 2 module)Eng
- Research Seminar "Trivium. Mathematics" (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Past Courses
Courses (2020/2021)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-3 module)Rus
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Calculus (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Mathematics of Science (Master’s programme; Faculty of Mathematics; 1 year, 1, 2 module)Eng
- Research Seminar "Sheaf Theory" (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
Courses (2019/2020)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Linear Programming (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Research Seminar "Sheaf Theory" (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
Courses (2018/2019)
- Calculus (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
- Geometry (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Introduction to Algebraic Topology (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Rus
- Mathematical Computations (Bachelor’s programme; Faculty of Mathematics; 2 year, 4 module)Eng
- Mathematics. Licenciatus (Bachelor’s programme; Faculty of Mathematics; 3 year, 4 module)Rus
- Research Seminar "Sheaf Theory" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Rus
- Theory of Functions of Complex Variable (Bachelor’s programme; Faculty of Mathematics; 2 year, 3 module)Rus
Courses (2017/2018)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Geometry (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Mathematical Practical Training 2 (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
Mathematics Practical Training (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 1 year, 1-4 module)Rus
- Mechanics (Bachelor’s programme; Faculty of Mathematics; 2 year, 4 module)Rus
Courses (2016/2017)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Geometry (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
Conferences
- 2016
Special session on “Topology and Physics” (Миннеаполис). Presentation: Factorization homology and the Kontsevich integral.
- 2014Гомологические методы в математической физике и теории представлений (Москва). Presentation: n-алгебры Вейля и инварианты многообразий I
- Гомологические методы в математической физике и теории представлений (Москва). Presentation: n-алгебры Вейля и инварианты многообразий II
- 2013XII международная школа по теоретической и математической физике (Севастополь). Presentation: Теорема Римана-Роха. Введение. Теорема Римана-Роха
Publications12
- Article Markaryan N. S. Weyl n-algebras and the Swiss cheese operad // Forum Mathematicum. 2021. Vol. 33. No. 2. P. 531-545. doi
- Preprint Markaryan N. S. On algebra of big zeta values / Cornell University. Series arXiv "math". 2020.
- Preprint Markaryan N. S. On generalized stuffle relations between cell-zeta values / Cornell University. Series math "arxiv.org". 2020.
- Preprint Markaryan N. S. Weyl n-algebras and the Swiss cheese operad / Cornell University. Series arXiv "math". 2020.
- Article Nikita Markarian. Weyl n-Algebras // Communications in Mathematical Physics. 2017. Vol. 350. No. 2. P. 421-442. doi
- Article Markaryan N. S. Weyl n-algebras and the Kontsevich integral of the unknot // Journal of Knot Theory and Its Ramifications. 2016. Vol. 26. No. 12 doi
- Chapter Tanaka H. L., Markaryan N. S. Factorization Homology in 3-Dimensional Topology, in: Mathematical Aspects of Quantum Field Theories. Springer, 2015. Ch. 7. P. 213-231.
- Article Khoroshkin, A., Markarian, N., Shadrin, S. Hypercommutative Operad as a Homotopy Quotient of BV // Communications in Mathematical Physics. 2013. Vol. 322. No. 3. P. 697-729. doi
- Preprint Khoroshkin A., Markaryan N. S., Shadrin S. Hypercommutative operad as a homotopy quotient of BV / Cornell University. Series math "arxiv.org". 2012. No. 1206.3749. (in press)
- Preprint Nikita Markarian. Manifoldic homology and Chern-Simons formalism / Cornell University. Series math "arxiv.org". 2012. No. 1106.5352v2.
- Article Markaryan N. S. The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem // Journal of London Mathematical Society. 2009. Vol. 79. No. 79(2). P. 129-143.