Eduard Gorbunov
- Research Assistant:Faculty of Computer Science / International Laboratory of Stochastic Algorithms and High-Dimensional Inference
- Eduard Gorbunov has been at HSE University since 2020.
Education
2018
Bachelor's in Applied Mathematics and Applied Physics
Moscow Institute of Physics and Technology
Publications16
- Article Dvurechensky P., Eduard Gorbunov, Gasnikov A. An accelerated directional derivative method for smooth stochastic convex optimization // European Journal of Operational Research. 2021. Vol. 290. No. 2. P. 601-621. doi
- Chapter Eduard Gorbunov, Bibi A., Sener O., Bergou E. H., Richtarik P. A Stochastic Derivative Free Optimization Method with Momentum, in: Proceedings of the 8th International Conference on Learning Representations (ICLR 2020). ICLR, 2020.. , 2020. P. 1-28.
- Article Beznosikov A., Eduard Gorbunov, Gasnikov A. Derivative-Free Method For Decentralized Distributed Non-Smooth Optimization // IFAC-PapersOnLine. 2020. P. 1-6. (in press)
- Chapter Eduard Gorbunov, Kovalev D., Makarenko D., Richtarik P. Linearly Converging Error Compensated SGD, in: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Associates, Inc., 2020. P. 1-12.
- Book Eduard Gorbunov, Hanzely F., Richtarik P. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108 Issue 108. PMLR, 2020.
- Chapter Eduard Gorbunov, Danilova M., Gasnikov A. Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping, in: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Associates, Inc., 2020. P. 1-12.
- Article Bergou E. H., Eduard Gorbunov, Richtarik P. Stochastic Three Points Method for Unconstrained Smooth Minimization // SIAM Journal on Optimization. 2020. Vol. 30. No. 4. P. 2726-2749. doi
- Chapter Gasnikov A., Gorbunov E., Dvurechensky P., Vorontsova E., Selikhanovich D., Uribe C., Jiang B., Haoyue W. Near Optimal Methods for Minimizing Convex Functions with Lipschitz p-th Derivatives, in: Proceedings of Machine Learning Research Vol. 99: Conference on Learning Theory, 25-28 June 2019, Phoenix, AZ, USA. PMLR, 2019.. PMLR, 2019. P. 1392-1393.
- Chapter Dvinskikh D., Gorbunov E., Gasnikov A., Dvurechensky P., Uribe C. On Primal and Dual Approaches for Distributed Stochastic Convex Optimization over Networks, in: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. doi P. 7435-7440. doi
- Chapter Gasnikov A., Dvurechensky P., Gorbunov E., Vorontsova E., Selikhanovych D., Uribe C. Optimal Tensor Methods in Smooth Convex and Uniformly Convex Optimization, in: Conference on Learning Theory, 25-28 June 2019, Phoenix, USA Vol. 99. , 2019. P. 1374-1391.
- Article Горбунов Э. А., Воронцова Е. А., Гасников А. В. О верхней оценке математического ожидания нормы равномерно распределенного на сфере вектора и явлении концентрации равномерной меры на сфере // Математические заметки. 2019. Т. 106. № 1. С. 13-23. doi
- Article Горбунов Э. А., Воронцова Е. А., Гасников А. В. О верхней оценке математического ожидания нормы равномерно распределенного на сфере вектора и явлении концентрации равномерной меры на сфере // Математические заметки. 2019. Т. 106. № 1. С. 13-23. doi
- Article Воронцова Е. А., Гасников А. В., Горбунов Э. А., Двуреченский П. Е. Ускоренные безградиентные методы оптимизации с неевклидовым проксимальным оператором // Автоматика и телемеханика. 2019. № 8. С. 149-168. doi
- Article Воронцова Е. А., Гасников А. В., Горбунов Э. А. Ускоренный спуск по случайному направлению с неевклидовой прокс-структурой // Автоматика и телемеханика. 2019. Т. 80. № 4. С. 126-143. doi
- Chapter Kovalev D., Eduard Gorbunov, Gasanov E., Richtarik P. Stochastic Spectral and Conjugate Descent Methods, in: Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Neural Information Processing Systems Foundation, 2018. P. 3358-3367.
- Article Гасников А. В., Горбунов Э. А., Ковалёв Д. А., Мохаммед А. А., Черноусова Е. О. Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков // Компьютерные исследования и моделирование. 2018. Т. 10. № 6. С. 737-753. doi
Conferences
- 2020
EIGHTH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS (Аддис-Абеба). Presentation: A Stochastic Derivative Free Optimization Method with Momentum
The 23rd International Conference on Artificial Intelligence and Statistics (Палермо). Presentation: "A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent"