• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Language Proficiency
Address: 6 Usacheva Ulitsa, room 305
Download CV (PDF, 41 Kb)
ORCID: 0000-0003-3295-8507
ResearcherID: Q-8192-2016
Scopus AuthorID: 12785484200
Google Scholar
F. A. Bogomolov
Printable version


Have you spotted a typo?
Highlight it, click Ctrl+Enter and send us a message. Thank you for your help!
To be used only for spelling or punctuation mistakes.

Sergey Rybakov

  • Sergey Rybakov has been at HSE University since 2009.

Education and Degrees

  • 2008

    Candidate of Sciences* (PhD)

  • 2004

    Lomonosov Moscow State University

* Candidate of Sciences
According to the International Standard Classification of Education (ISCED) 2011, Candidate of Sciences belongs to ISCED level 8 - "doctoral or equivalent", together with PhD, DPhil, D.Lit, D.Sc, LL.D, Doctorate or similar. Candidate of Sciences allows its holders to reach the level of the Associate Professor.

Professional Interests

Student Term / Thesis Papers

Full list of of student term / thesis papers



  • 2016
    Surfaces in positive characteristic (Москва). Presentation: Abelian varieties over finite fields and the Tate--Honda theorem
  • Surfaces in positive characteristic (Москва). Presentation: Zeta functions of Kummer surfaces
  • Higher Dimensional Algebraic Geometry and Characteristic p (Марсель). Presentation: On zeta functions of cubic surfaces over finite fields

  • 2014
    Пятая международная конференция "Дзета-функции" (Москва (Moscow)). Presentation: Coherent de Rham-Witt modules
  • 2013
    Диофантова геометрия (Москва). Presentation: On groups of points on abelian varieties over finite fields
  • Летняя школа-конференция по проблемам алгебраической геометриии и комплексного анализа (Ярославль). Presentation: Абелевы многообразия над конечными полями
  • Arithmetic, Geometry, Cryptography and Coding Theory (Марсель). Presentation: Plenary talk "Groups of points on abelian varieties over nite elds"
  • Workshop "p-adic Modular Forms" (Альпбах). Presentation: Overconvergent modular forms