• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
For visually-impairedUser profile (HSE staff only)SearchMenu

Optoelectronic devices for optical interconnects and optical on-chip systems based on semiconductor nanomaterials

Priority areas of development: engineering science
2020

Goal of research

The aim of the research is to study new physical phenomena in semiconductor nanostructures, laser microcavities and optical waveguides, as well as to search for methods of using these effects in the development of integrated optoelectronic/nanophotonics devices. Search for new features for ultra-small light emitters, high-speed optical communication systems, optical integrated circuits, optical sensors and other applications. Investigation of technological problems associated with the development of optoelectronic/photonic devices based on micro- and nano-resonators for on-chip optical interconnect systems.

Methodology

To fabricate semiconductor heterostructures epitaxial technologies of molecular beam epitaxy (MBE) or metallorganic chemical vapor deposition (MOCVD) were used depending on the type of active region. To realize microlasers based on A3B5 semiconductor compounds, the methods of photolithography, plasma-chemical etching, ion etching, and vacuum deposition of contact systems were used. Morphological studies were performed using optical and electron microscopy. Spectral characteristics were studied by photoluminescence and electroluminescence with high spectral resolution (0.05 nm). Studies of the dynamic characteristics of microlasers were carried out by analyzing the amplitude-frequency response with small-signal modulation of the injection current. To study the optical coupling of a microdisk resonator with an optical waveguide, numerical simulation based on the finite element method in the COMSOL Multiphysics software package was used. An electrodynamic module was used and the problem on eigen frequencies was solved.

Empirical base of research

The empirical basis of the research is the experimental samples created within the framework of the project in accordance with the previously developed layer structure, geometry, etc. by methods specially selected for these purposes, the results of experimental studies (measurements) of samples carried out within the framework of this project, as well as data available in the scientific literature on the characteristics of samples similar in structure and geometry. The epitaxial structures used in the study were synthesized using modern Riber 49 MBE and Aixtron MOCVD machines. The microlasers were fabricated using Rokappa Technics, Balzers, Semitec setup. A YLF:Nd+3 laser operating at the second harmonic (527 nm) in a continuous mode is used to pump the samples opticaly. The outcoupled emission was collected in the plane of the microlaser using a Mitutoyo microobjectives and recorded with an optical spectrum analyzer (Yokogawa) or using a monochromator equipped with an InGaAs cooled CCD matrix. A Keithley 2401 source-measuring device was used as a source of the pumping current for the microlaser. To study the dynamic characteristics, a microprobe setup with a Keysight microwave network analyzer was used.

Results of research

The characteristics of microdisk lasers with an active region based on In(Ga)As/GaAs quantum dots are created and studied. For a microdisk with a resonator radius of 13.5 μm, the maximum modulation frequency was f(3dB) = 5.9 GHz. It is shown that it is possible to use InGaAs quantum dots as an active region in uncooled high-speed optical communication devices. The maximum frequency, limited by the K-factor, is 13 GHz, as was estimated based on the analysis of the modulation response. The limitation of performance of relatively small microdisk lasers is mainly determined by phenomena caused by overheating of the active region, while for larger microdisks the maximum modulation bandwidth is limited by the damping of relaxation oscillations and the parasitic cutoff frequency. A numerical model is constructed that describes the optical coupling of the modes of the whispering gallery of a microdisk resonator with an optical waveguide, and the efficiency of this interaction is analyzed. It is shown that for each selected whispering gallery mode at certain waveguide thicknesses, resonance interaction is possible and, as a consequence, multiple amplification of the optical energy output. The possibility to detect emission from a microdisk laser with 24 μm diameter with an active region based on InGaAs/GaAs quantum well-dots using a closely spaced photodetector with a similar active region is shown. For a continuous operation of the microlaser, at pumping current of 20 mA and a distance between the microlaser and photodetector edges of about 100 µm, a photocurrent of ~ 10 µA was obtained, which corresponds to a photodetector sensitivity of ~ 0.9 µA/µW. The results of calculation of the whispering gallery optical modes and series electrical resistance of microdisk resonators based on AlGaAs/GaAs laser p-i-n heterostructures with InAs/InGaAs quantum dots, integrated with a silicon substrate are presented. It is shown that the impedance of integrated microlaser is largely determined by the diameter of the microdisk resonator. The main contribution (> 73%) to the device impedance comes from the resistance of the semiconductor layers forming the microdisk resonator. Injection microdisk lasers of various diameters (15–31 µm) using a heterostructure with InAs / InGaAs quantum dots, epitaxially grown on a silicon substrate, have been implemented. Such microlasers are capable of operating without cooling in a continuous mode at room and elevated temperatures. Thus, it has been demonstrated that whispering gallery mode semiconductor lasers, such as micro-ring or microdisk lasers, with a small foot-print and in-plane emission, are promising for efficient and compact light sources. The results obtained demonstrate the possibility to realize miniature high-speed light sources for applications in optical communication using lasers with a diameter of only a few micrometers.

Level of implementation, recommendations on implementation or outcomes of the implementation of the results

This research work is of fundamental nature. Practical use of the results obtained at this stage of research is not provided. The results of the work can be used to formulate the technical specifications for experimental design work in industrial enterprises interested in the development of new technologies for light-emitting devices and an active region based on semiconductor quantum dots. Such companies can be large enterprises (for example, Intel corporations, Huawei, which develop their own areas of silicon photonics, Hamamtsu, Egismos Technology Corporation.) And smaller manufacturers interested in improving the parameters of their own light-emitting devices (Princeton Optronics, Inc. Innolume GmbH, http://www.innolume.com/, VI Systems GmbH, http://www.vi-systems.com/ and others). In addition, Russian manufacturing organizations are interested in gaining new knowledge on the project topic, for example, Connector Optics CJSC, Semiconductor Devices CJSC, NOLATEH CJSC, the Scientific and Technological Center for Microelectronics and Submicron Heterostructures at the Physico-Technical Institute. A.F. Ioffe RAS, Institute for Analytical Instrumentation RAS and other scientific, educational and scientific organizations conducting research, educational process and production activities in the field of semiconductor nanotechnology.

Publications:


Бобров М., Blokhin S., Малеев Н., Кузьменков А., Устинов В. Anomalous lasing in VCSEL with double oxide current apertures // Journal of Physics: Conference Series. 2019. Vol. 1410. No. 1. P. 012002-. doi
Бобров М., Blokhin S., Малеев Н., Блохин А., Васильев А., Кузьменков А., Гладышев А., Новиков И., Петренко М., Оспенников А., Ермак С., Устинов В. Effect of coherent population trapping in a compact microfabricated Cs gas cell pumped by intra-cavity contacted VCSELs with rhomboidal oxide current aperture // Journal of Physics: Conference Series. 2019. Vol. 1400. No. 7. P. 077014-. doi
Малеев Н., Васильев А., Кузьменков А., Бобров М., Кулагина М. М., Трошков С., Малеев С., Беляков В., Петрякова Е., Кудряшова Е., Фефелова Е., Макарцев И., Блохин С. А., Ахмедов Ф., Егоров А., Фефелов А., Устинов В. InAlAs/InGaAs/InP HEMTs с композитным каналом и улучшенными пробивными характеристиками // Письма в Журнал технической физики. 2019. Т. 45. № 21. C. 29-33. doi
Бобров М., Блохин А., Кузьменков А., Малеев Н., Устинов В., Колодезный Е., Рочас С., Бабичев А., Блохин С. А., Новиков И., Гладышев А., Караченский Л., Денисов Д., Воропаев К., Ионов А., Егоров А. Анализ внутренних оптических потерь вертикально-излучающего лазера спектрального диапазона 1.55 μm, сформированного методом спекания пластин // Оптика и спектроскопия. 2019. Т. 127. № 7. C. 145-149. doi
Блохин С. А., Малеев Н., Бобров М., Кузьменков А., Васильев А., Задиранов Ю., Кулагина М. М., Блохин А., Гусева Ю., Оспенников А., Петренко М., Гладышев А., Егоров А., Новиков И., Карачинский Л., Денисов Д., Устинов В. Вертикально-излучающие лазеры с внутрирезонаторными контактами и ромбовидной токовой апертурой для компактных атомных часов // Квантовая электроника. 2019. Т. 49. № 2. C. 187-190. doi
Блохин С. А., Бобров М., Блохин А., Кузьменков А., Малеев Н., Устинов В., Колодезный Е., Рочас С., Бабичев А., Новиков И., Гладышев А., Караченский Л., Денисов Д., Воропаев К., Ионов А., Егоров А. Влияние потерь на вывод излучения на динамические характеристики вертикально-излучающих лазеров спектрального диапазона 1.55 мкм, изготовленных методом спекания эпитаксиальных пластин // Физика и техника полупроводников. 2019. Т. 53. № 8. C. 1128-1134. doi
Малеев Н., Бобров М., Кузьменков А., Васильев А., Кулагина М. М., Гусев Ю., Блохин С. А., Устинов В. Гетеробарьерные варакторы с неоднородно легированными модулирующими слоями // Письма в Журнал технической физики. 2019. Т. 45. № 20. C. 51-54. doi
Жуков А. Е., Моисеев Э. И., Крыжановская Н. В., Зубов Ф. И., Можаров А., Калюжный Н. А., Минтаиров С. А., Кулагина М. М., Блохин С. А., Максимов М. В. Потребление энергии для высокочастотного переключения микродискового лазера с квантовыми точкам // Письма в Журнал технической физики. 2019. Т. 45. № 16. C. 49-51. doi
Kryzhanovskaya N., Moiseev E., Зубов Ф. И., Можаров А., Максимов М. В., Калюжный Н. А., Минтаиров С. А., Кулагина М. М., Гусева Ю., Blokhin S., Кудрявцев К., Яблонский А., Морозов С., Berdnikov Y., Рувимов С., Zhukov A. Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots // Photonics Research. 2019. Vol. 7. No. 6. P. 664-668. doi
Kryzhanovskaya N., Moiseev E., Зубов Ф. И., Можаров А., Максимов М. В., Калюжный Н. А., Минтаиров С. А., Blokhin S., Гусева Ю., Кулагина М. М., Berdnikov Y., Zhukov A. Evaluation of energy-to-data ratio of quantum-dot microdisk lasers under direct modulation // Journal of Applied Physics. 2019. Vol. 126. No. 6. P. 063107-. doi
Yury B., Eduard M. Optimization of Optoelectronic Properties of Patterned SingleWalled Carbon Nanotube Films // ACS Applied Materials & Interfaces. 2020. Vol. 12. No. 49. P. 55141-55147. doi
Y. S. Berdnikov Study of Wurtzite Crystal Phase Stabilization in Heterostructured Ga(As,P) Nanowires // Физика и техника полупроводников. 2020. Vol. 14. doi
Воропаев К., Селезнев Б., Прохоров А., Ионов А., Blokhin S. The fabrication technology of VCSELs emitting in the 1.55 μm waveband // Journal of Physics: Conference Series. 2020. No. 1658. P. 012069-. doi
Блохин С. А., Неведомский В., Бобров М., Малеев Н., Блохин А., Кузьменков А., Васильев А., Рочас С., Бабичев А., Гладышев А., Новиков И., Карачинский Л., Денисов Д., Воропаев К., Ионов А., Егоров А., Устинов В. Вертикально-излучающие лазеры спектрального диапазона 1.55 мкм, изготовленные по технологии спекания гетероструктур, выращенных методом молекулярно-пучковой эпитаксии из твердотельных источников // Физика и техника полупроводников. 2020. Т. 54. № 10. C. 1088-1096. doi
Blokhin S., Бобров М., Малеев Н., Блохин А., Кузьменков А., Васильев А., Рочас С., Гладышев А., Бабичев А., Новиков И., Карачинский Л., Денисов Д., Воропаев К., Ионов А., Егоров А., Устинов В. Вертикально-излучающий лазер спектрального диапазона 1.55 µm с туннельным переходом на основе слоев n++-InGaAs/р++-InGaAs/р++-InAlGaA // Письма в Журнал технической физики. 2020. Vol. 46. No. 17. P. 21-25. doi
Блохин С. А., Бобров М., Кузьменков А., Васильев А., Малеев Н., Рочас С., Гладышев А., Бабичев А., Новиков И., Карачинский Л., Денисов Д., Воропаев К., Ионов А., Устинов В. Эффект насыщающегося поглотителя в длинноволновых вертикально-излучающих лазерах, реализованных по технологии спекания // Письма в Журнал технической физики. 2020. Т. 46. № 24. C. 49-54. doi
Zhukov A., Kryzhanovskaya N., Moiseev E., Nadtochiy A., Dragunova A., Maximov M., Berdnikov Y., Zubov F. I., Mintairov S. A., Kadinskaya S. A., Kulagina M. M., Kalyuzhnyy N. A. Impact of Self-heating and Elevated Temperature on Performance of Quantum Dot Microdisk Lasers // IEEE Journal of Quantum Electronics. 2020. Vol. 56. No. 5. P. 1-8. doi
Zhukov A., Kryzhanovskaya N., Moiseev E., Dragunova A., Tang M., Chen S., Huiyun L., Kulagina M. M., Kadinskaya S. A., Zubov F. I., Mozharov A. M., Максимов М. В. InAs/GaAs quantum dot microlasers formed on silicon using monolithic and hybrid integration methods // Materials. 2020. Vol. 13. No. 10. doi
Zhukov A., Moiseev E., Nadtochiy A., Kryzhanovskaya N., Kulagina M., Mintairov S., Kalyuzhnyi N., Zubov F., Maximov M. The Effect of Self-Heating on the Modulation Characteristics of a Microdisk Laser // Письма в Журнал технической физики. 2020. Vol. 46. P. 515-519. doi
Жуков А. Е., Моисеев Э. И., Надточий А. М., Крыжановская Н. В., Кулагина М. М., Минтаиров С. А., Калюжный Н. А., Зубов Ф. И., Максимов М. В. Влияние саморазогрева на модуляционные характеристики микродискового лазера // Письма в Журнал технической физики. 2020. Т. 46. № 11. C. 3-7. doi
Жуков А. Е., Моисеев Э. И., Надточий А. М., Драгунова А. С., Крыжановская Н. В., Кулагина М. М., Можаров А. М., Кадинская С. А., Симчук О. И., Зубов Ф. И., Максимов М. В. Лазерная генерация перенесенных на кремний инжекционных микродисков с квантовыми точками InAs/InGaAs/GaAs // Письма в Журнал технической физики. 2020. Т. 46. № 16. C. 3-6. doi
Фетисова М. В., Kryzhanovskaya N., Редуто И. В., Журихина В. В., Морозова О., Расходчиков А., Roussey M., Pelisset S., Кулагина М. М., Гусева Ю. А., Липовский А. А., Максимов М. В., Zhukov A. Strip-loaded horizontal slot waveguide for routing microdisk laser emission // Journal of the Optical Society of America B: Optical Physics. 2020. Vol. 37. No. 6. P. 1878-1885. doi
Крыжановская Н. В., Надточий А. М., Моисеев Э. И., Жуков А. Е., Харченко А. А., Минтаиров С. А., Калюжный Н. А., Кулагина М. М., Максимов М. В. Микрооптопара на базе микродискового лазера и фотодетектора с активной областью на основе квантовых ям-точек // Письма в Журнал технической физики. 2020. Т. 46. № 13. C. 7-10. doi
Maximov M., Nadtochiy A., Zhukov A. Electronic states in GaAs photoconverters with InGaAs quantum well-dots // Applied Physics Express. 2020. Vol. 13. No. 1. P. 015009-. doi
Kryzhanovskaya N., Moiseev E., Zhukov A., Maksimov M. V. Analysis of the lasing characteristics of InGaAs/GaAs WGM microlasers, in: 7th International School and Conference "Saint-Petersburg OPEN 2020" on Optoelectronics, Photonics, Engineering and Nanostructures. Bristol : Institute of Physics Publishing (IOP), 2020. С. 012096-. 
Kryzhanovskaya N., Максимов М. В., Zhukov A. Microdisk lasers for high-sensitive protein detection in microfluidic devices, in: SPIE PHOTONICS EUROPE 2020 Biophotonics in Point-of-Care. Bellingham : SPIE, 2020. 
Максимов М. В., Nadtochiy A., Zhukov A. Optoelectronic devices with active region based on InGaAs/GaAs quantum well dots, in: SPIE PHOTONICS EUROPE 2020 Biophotonics in Point-of-Care. Bellingham : SPIE, 2020. С. 1135601-1135607. 
Moiseev E., Kryzhanovskaya N., Maximov M., Zhukov A. Experimental investigation of the far-field emission pattern of microdisk laser modes, in: 7th International School and Conference "Saint-Petersburg OPEN 2020" on Optoelectronics, Photonics, Engineering and Nanostructures. Bristol : Institute of Physics Publishing (IOP), 2020. С. 012094-1-012094-5. 
Moiseev E., Kryzhanovskaya N., Maximov M., Zhukov A. Investigation of microdisk and microring lasers based on InGaAs/GaAs QWDs by the interferometry method, in: 7th International School and Conference "Saint-Petersburg OPEN 2020" on Optoelectronics, Photonics, Engineering and Nanostructures. Bristol : Institute of Physics Publishing (IOP), 2020. С. 012093-1-012093-4. 
Gordeev N. Y., Максимов М. В., Payusov A. S., Serin A. A., Shernyakov Y. M., Mintairov S. A., Kalyuzhnyy N. A., Nadtochiy A., Zhukov A. Material gain of InGaAs/GaAs quantum well-dots // Semiconductor Science and Technology. 2021. Vol. 36. No. 1. doi