• A
• A
• A
• АБВ
• АБВ
• АБВ
• А
• А
• А
• А
• А
Обычная версия сайта

# High-dimensional Statistical Methods

2019/2020
Учебный год
ENG
Обучение ведется на английском языке
6
Кредиты
Статус:
Курс обязательный
Когда читается:
1-й курс, 3 модуль

### Course Syllabus

#### Abstract

The course presents an introduction to modern statistical and probabilistic methods for data analysis, emphasising finite sample guarantees and problems arising from high-dimensional data. The course is mathematically oriented and level of the material ranges from a solid undergraduate to a graduate level. Topics studied include for instance Concentration Inequalities, High Dimensional Linear Regression and Matrix estimation. Prerequisite: Probability Theory.

#### Learning Objectives

• Understand the effect of dimensionality on the performance of statistical methods
• Popular methods adapted to the high-dimensional setting

#### Expected Learning Outcomes

• knowledge of what a sub-gaussian random variable is.
• Understanding the behaviour of suprema of random variables
• BIC, LASSO and SLOPE methods for high-dimensional linear regression
• Knowledge of basic probabilistic results related to random matrices and useful in statistics.

#### Course Contents

• Сoncentration of sums of independent random variables
Subgaussian distributions; Subgamma distributions.
• Suprema
Finite case; Suprema over convex polytopes; Covering and packing numbers; Chaining bounds.
• High dimensional regression
BIC, LASSO and SLOPE estimators.
• Statistics and random matrices
Analysis and probability with matrices; Matrix version of Bernstein’s inequality; High dimensional PCA and random projections.

#### Assessment Elements

• Home assignment 1
• Home assignment 2
• Final written test
Оценка за дисциплину выставляется в соответствии с формулой оценивания от всех пройденных элементов контроля. Экзамен не проводится.

#### Interim Assessment

• Interim assessment (3 module)
0.2 * Final written test + 0.4 * Home assignment 1 + 0.4 * Home assignment 2

#### Recommended Core Bibliography

• Boucheron, S., Lugosi, G., Massart, P. Concentration inequalities: A nonasymptotic theory of independence. – Oxford university press, 2013.