V. Shpringel

THE RUSSIAN FINANCIAL CRISIS: WHY WAS RUBLE DEVALUATION ACCOMPANIED BY THE SOVEREIGN DEBT CRISIS?

Препринт WP9/2005/03
Серия WP9
Исследования по экономике и финансам
Research in economics and finance
I. Introduction

Last ten years a number of currency crises struck emerging markets. The most serious among them were the Mexican crisis of 1994 (tequila crisis), the crises of 1997—1998, which hit several East Asian countries and then Russia and Brazil, the Argentine financial turmoil of 2001—2002. They were usually contractionary (Calvo and Reinhart, 2000; Eichengreen and Rose, 2001) and were associated with loss of access to international credit, chronic and marked volatility in domestic interest rates. Furthermore, exchange rate volatility appeared to be damaging to trade and the pass-through from exchange rate swing to inflation.

For example, the Russian debacle inflicted large losses on major financial institutions. In the period of August 1998 — January 1999 the ruble depreciated by more than 75%, international reserves of the Bank of Russia fell by 30%. Total capital of Russian banks dropped by 36% in nominal terms. Total losses of the banking system (direct and indirect) and the costs of its restructuring were estimated at more than 11% of GDP. The consequences of the Argentine crisis were even more drastic. In 2002 real GDP contracted by more than 15%, the nominal devaluation of peso was about 70% (Edwards, 2002). The authorities were compelled to default on their debt and to implement a deposit freeze and tight currency controls.

The recent currency crises differed much in the view of their genesis. The Mexican and the East Asian crises were evidently generated by the liquidity and currency mismatches in the balance sheets of private companies and banks (Chang and Velasco, 1998; Cosetti, Pesenti, Roubini, 1998; Radelet and Sachs, 1998), whereas the Russian and the Argentine turmoil were mainly driven by the financial problems of the public sector (Montes and Popov, 1999; Edwards, 2002). The mechanisms of the last two episodes are close but not identical to the currency crisis of the 1970—1980s. On the one hand, an important role of persistent fiscal imbalance — a key factor in the Latin American crises of 1970—1980s. On the other hand, the Russian and the Argentine currency crises were associated with Sudden Stops in capital flows (Calvo, Izquierdo and Talvi, 2003), generated by the shifts in investors’ behavior, and the use of restrictive monetary policy by the authorities.

Taking into account the role of fiscal imbalance in provoking a currency crisis, Entov (1999) and Montes and Popov (1999) tried to explain the Russian currency crisis by a canonical Krugman’s model (Krugman, 1979). In my opinion, this approach is not adequate.

First, Krugman uses an idea that domestic-currency interest rate is subject to international arbitrage condition. Forward foreign exchange rates should have been...
based on interest rate parity to prevent the arbitrage opportunity. But this was not the case both in Russia and in Argentina where the forward exchange rate differed much from the parity due to high probability of sovereign default. Second, the Russian exchange rate system in the pre-crisis period can’t be considered a fixed exchange rate system. In July 1995 Russian monetary authorities announced a wide crawling “corridor” (12—14% around the central rate) within which a ruble-dollar rate was allowed to fluctuate. Third, Krugman uses an idea that budget expansion provokes the growth in domestic credit. At the same time both Entov (1999) and Montes and Popov (1999) acknowledged that budget expansion was combined with the restrictive monetary policy in Russia. This was also the case in Argentina (Edwards, 2002). Fourth, according to Krugman’s model, sovereign default is provoked by the sharp currency depreciation whereas in Russia, on the contrary, ruble depreciation was generated by the government insolvency.

I argue that the combination of tight monetary policy with budget expansion was exactly at the root of Russian financial crisis and could be severely blamed for the Argentine debacle. This combination is dangerous independently of what exchange rate arrangement is applied by monetary authorities: super-fixed, crawling peg or free floating.

To test these hypotheses theoretically I develop a currency crisis model. The model proceeds from the assumptions of risk-averse investors, rational expectations, imperfect capital mobility and free floating. An investor makes the decision comparing the expected returns of investment in government’ securities of developed countries and emerging markets.

The model shows that persistent budget deficit combined with the restrictive monetary policy were at the root of the Russian financial crisis, generating rapid debt accumulation and an unsustainable increase in the debt-servicing payments. Growing sovereign default exchange rate risks made investors at first stop the transfer of funds and then run from Russia. The choice of a protective interest rate policy by Russian monetary authorities in spring-summer 1998 was false, taking into account poor economic situation, fragility of the banking system and huge fiscal imbalance. The results of simulation show that if either interest rates were smaller, or the rate of currency depreciation was less sensitive to capital inflows, the crisis could have been less rapid, and even might have been avoided. They also demonstrate that budget deficit restriction of 3% of GDP, applied to EC countries, was much from the parity due to high probability of sovereign default.

The remainder of the paper is organized as follows. In Section II I review Russian economy and financial sector development in the pre-crisis period. In Section III I develop the model of the Russian currency crisis and present the results of model simulation. Section IV offers concluding remarks.

II. Russian economy and financial sector development in the pre-crisis period

An implementation of the financial stabilization program since April 1995 resulted in a radical change of the economic and financial situation. The aims of the program were to cure the continuing ruble inflation via strict control over monetary supply and to push economic growth through stimulating investments and real personal income.

The GKO system had to substitute money printing as a source of budget deficit financing. Another important part of the stabilization program was a fixed band foreign exchange policy, used as a nominal anchor. Since 1996 Russian monetary authorities established a wide sloping “corridor” of 12—14% around the baseline rate within which the ruble-dollar rate was allowed to fluctuate. As a result, the rate of currency depreciation was seriously reduced. Due to high dependence of inflation rate on the rate of currency depreciation, associated with a high dollarization of economy (the prices of significant number of goods and services were denominated in US dollars), inflation was curbed in a few months.

Another goal of the program — acceleration of economic growth — remained unattainable. As the inflationary pressure of the ruble fell down, the rate of output decline abated but the real economy didn’t start to recover. One of the reasons for the negative rate of GDP growth was substitution of investment in GKO for commercial and investment loans in banks’ portfolios. Striving to make the GKOs more attractive, the government was forced to offer high rates to the investors. As a return on GKO was high and considered as risk-free, the bank lending rate went up too, and became prohibitively high for most of the enterprises. This resulted in reduction of the demand for loans, and the share of bad loans boosted due to adverse selection.

Since the government had serious troubles collecting due taxes, the support of the GKO system relied on its own reproduction, thus creating the danger of a financial pyramid. The financial resources to pay off the previous GKO obligations were coming from the issue of new GKOs. High debt-servicing costs in conjunction with the prevalence of short-term obligations resulted in a rapid growth in the GKO supply. Meanwhile, the demand for debt obligations was limited due to the scarce funds of the Russian financial institutions.

In order to lower the cost of borrowings the Russian government facilitated the entrance to the GKO market for non-residents since the fall of 1996. High interest income and pegged exchange rate, which seemed to insure investors against exchange rate risk, generated massive capital inflow ($19 bln., or 10.7% of GDP in the first half of 1997). This caused a gradual interest rate decline (Fig. 1) and allowed the government to increase the duration of the debt. The interest rates and debt-servicing costs reached the minimum in the mid-summer of 1997.
This massive capital inflow also resulted in a rapid growth in the share of non-residents in the domestic-currency debt outstanding and made them the main creditors of the government, excluding the Bank of Russia. According to Entov (1999) a share of non-residents in the GKOs outstanding rose from 2—3% in the spring of 1996 to 30—35% in the mid-summer of 1998. The volume of GKO obligations owned by the foreign investors became two times higher than Russia’s international reserves by 1998.

As a result of large-scale capital inflow the dependence of Russian financial assets’ prices on the conditions of the international capital market grew significantly. This conclusion is confirmed by the results of statistical tests. In January 1996 — July 1998 the correlation of return on GKO obligations with return on US T-bills and the rate of ruble depreciation were 0.6 and 0.79 respectively (Shpringel, 2000).

Failure of the forward foreign exchange rates to comply with the interest rates spread resulted in arbitrage opportunities. The series of transactions: buying rubles for US dollars, investing them in GKO and simultaneously taking long position in appropriately timed forward dollar contracts produced high gross US dollar return which fluctuated from 10—15% in September 1997 to more than 100% in the mid-summer of 1996 (prior to the President elections) (Shpringel, 2000, Solodkov and Rock, 2001).

Though the domestic-currency debt was not large — approximately 20% of GDP by 1998 — the situation with its servicing was tense. Due to positive real interest rates and the necessity to finance primary budget deficit (it was about 2—3% of GDP in 1996—1997), domestic-currency debt and debt-servicing payments proliferated. The ratio of internal debt to nominal GDP continued to grow even in 1997, when interest rates were at their minimum and the rate of real output growth was close to zero.

The situation in the Russian financial market seriously deteriorated in the fall of 1997, when Russia began to feel the spillover effect from the Asian financial meltdown. Because of the large losses on investment in the Asian financial markets international investors became more cautious about transactions on the emerging markets. As a result the required return on GKO rose from 14% in September 1997 to 28% in November 1997 (Fig. 1). The interest rates growth was accompanied by a decline in the rate of currency depreciation and the inflation rate.

The real output decline in the Asian countries was a great shock to the primary commodities market as East Asia was a rapidly growing region with a high demand for oil, gas and metals. As the share of primary commodities in the Russian export was very large, the terms of trade deteriorated seriously. As oil-extracting companies were the main taxpayers, revenues of the federal government declined as well.

Since the government received less revenues and the cost of borrowing rose, debt-servicing problems began to mount. The ratio of debt services to tax revenues grew steadily during the first half of 1998. Monthly debt-servicing payments were two times higher than the tax revenues of the federal budget in the mid-summer of 1998. In July 1998 the inflow of purchases minus the interest payments and principal repayments became a net negative of $1 bln. each week. The government tried to unroll the situation by combating tax evasion and extending the tax base (a tax administration program was submitted to the parliament in May 1998) but it could hardly affect the market participants’ expectations since it was believed that the government will need far too much time to realize this program. A majority of investors realized that the government had no funds to pay off the debt and began to withdraw capital.

When in May-June 1998 the pressure on the exchange rate became too heavy, the Bank of Russia tried to prevent the capital outflow by adopting a restrictive monetary policy. The Bank of Russia discount rate rose twofold from 30% to 60% (150% in the period of May, 28 — June, 4). This strategy was inspired by the IMF consultants, who believed that pegged exchange policy was the only way to prevent a repetition of the hyperinflation scenario of the early 1990s.

Taking into account the conditions of Russian GKO market and the real sector, restrictive monetary policy seems to be counterproductive. Discount rate hike by

1 The domestic-currency debt to GDP ratio rose from 17% in January 1997 to 20% in November 1997.
the Bank of Russia caused the growth in debt-servicing costs for the government and the cost of borrowing for the commercial banks. As the banks had significant maturity mismatches and heavily invested in the lucrative GKO market, the interest rates hike inflicted high losses on them.

When capital outflow became irreversible in August 1998, the Russian government refused to meet significant part of its debt obligations and the Bank of Russia abandoned the peg.

Thus, a careful examination of financial market and real economy development in Russia prior to the crisis raise a question on the role of combination of restrictive monetary policy and budget expansion in provoking financial distress.

III. A Model of Russian Currency Crisis

I study a small open economy in continuous time. There are two “countries” in the world (i = 1, 2). Trade balances of both countries are equal to zero. Governments are the only issuers of bonds (zero-coupon bonds), which are denominated in the domestic currency.

Investors regard the bonds issued by the government of the first “country” (developed country) as risk-free. At the same time the bonds, issued by the government of the second “country” (emerging market), are characterized by non-zero risk of default.

The monetary authorities of the second “country” maintain the nominal interest rate on government bonds. There is no secondary market and investors acquire bonds and hold them until redemption. The domestic Central Bank has a commitment to acquire the bonds not purchased by private investors (\(B_t\)). Thus all bonds, issued by the government of the second “country”, could be regarded as distributed between the residents of the first “country” and the monetary authorities of the second “country”:

\[D_t = F_t + B_t \]

where \(F_t\) and \(B_t\) are the nominal value of domestic-currency debt held by foreign investors and the domestic Central Bank respectively.\(^3\)

The investor will keep the assets portfolio’s structure invariable only if the bonds provide the same expected return. Investing 1 money unit in the government bonds of the first “country”, investor would receive \(e^{\nu_t}\) with certainty in the next time period.

On the contrary, investing the same sum in the government bonds of the second “country”, she would receive \(\bar{S} \times e^{\nu_t}\) with probability \((1 - \varphi_t)\), or \(l\) (the present value of debt-servicing payments of the government in the case of default, \(l \leq 1\)) with probability \(\varphi_t\) (\(\varphi_t \in [0; 1]\)).\(^4\) where \(\varphi_t\) is the probability of default and \(R_t\) is the interest rate on the bonds of the second “country”. In the second case, the investor is also exposed to the risk of currency devaluation or to pay much for 1 unit of foreign exchange. Taking into account these assumptions, the expected return on investment in the government bonds of the second “country” (\(E(U_t)\)) is equal to:

\[E(U_t) = \frac{(1 + R_t) \times (1 - \varphi_t) + l \bar{S}_t}{1 + \bar{e}_t}, \]

where \(\bar{e}_t = \bar{e}, \text{ if } \bar{S}_t \geq \bar{S}_t\)

\[\bar{e}_t = \bar{e}, \text{ if } \bar{S}_t < \bar{S}_t\]

where \(\bar{S}_t\) is a “shadow” exchange rate, balancing the currency market without Central Bank’s interventions, \(\bar{e}\), is a rate of change of the “shadow” exchange rate.

According to the first-generation models, the speculative attacks are successful if the “shadow” exchange rate exceeds steadily the exchange rate maintained by the authorities (\(\bar{S}_t > \bar{S}_t\) (Krugman, 1979). If the international reserves are exhausted, the “shadow” exchange rate becomes an official one.

The equation (3) implies that the condition of zero capital flows is given by:

\(^2\) Now and then I regard the currency of the second “country” as the domestic currency.

\(^3\) I ignore the demand of domestic private investors for the second country government bonds because the private banks and enterprises in developing and transition economies have scarce financial resources and most financial assets are purchased by foreign investors or by structures affiliated with the government.

\(^4\) The value of \(\varphi_t\) is determined by investors on the basis of debt to budget tax revenues ratio, as further described below.
\[
1 + R_t^* = \left[\frac{(1 + R_g^*) \times (1 - \phi_d) + \lambda \phi_d}{1 + \varepsilon_r} \right]^{\frac{1}{\alpha}}, \quad \alpha > 1,
\] (4)

where \(\alpha\) is a coefficient of personal investor’s risk aversion.

I use power function in (4) in order to satisfy the basic assumption: risk-averse investors would prefer to invest in risk-free asset if it secures the same return as the risky asset. The higher is the parameter \(\alpha\), the higher is investor’s degree of risk aversion. If the probability of sovereign default (\(\phi_d\)) is equal to zero, the coefficient \(\alpha\) is equal to 1 (risk-neutrality), and if \(\lambda\) is equal to 1, equation (4) transforms into equation of uncovered interest rate parity.

If \(\lambda\) doesn’t differ significantly from 1, one could re-write equation (4) using Taylor’s series in the following way:

\[
\mathcal{F} = R_g^* \times (1 - \phi_d) - \phi_d \times (1 - l) - \alpha R_t^*,
\] (4a)

The dynamics of the “shadow” exchange rate is determined by the direction and scale of the capital flows.

\[
CF_t = \frac{\beta}{\alpha} \times \left[R_g^* \times (1 - \phi_d) - \phi_d \times (1 - l) - \varepsilon_r - \alpha R_t^* \right], \quad g_r > 0^6,
\] (5)

If the expected return on the second “country” government bonds (expression in the right-hand side of (4)) is smaller than the yield on the first “country” government bonds (expression in the left-hand side), a capital outflow from the second “country” \((CF_t < 0)\) is registered. According to equation (5) a decrease in the gross return on the second “country”’s government bonds \((R_g)\) raises the probability of the capital outflow. In turn, persistent capital outflow generates depreciation of the “shadow” exchange rate, thus making the currency crisis more probable.

\[
\dot{\varepsilon}_t = -g_r \times \left[\frac{\beta}{\alpha} \times \left(R_g^* \times (1 - \phi_d) - \phi_d \times (1 - l) - \varepsilon_r - \alpha R_t^* \right) \right], \quad g_r > 0^7
\] (6)

where \(g_r\) is a measure of sensitivity of the rate of change in the “shadow” exchange rate to capital inflows (outflows). It is evident that the higher the level of GDP monetization, the lower the sensitivity of the rate of currency depreciation to the capital flows.

The model also captures an idea that investors estimate the probability of sovereign default by comparison of the debt-servicing payments with the budget revenues (the government liquidity ratio). Investors would trust the government and readily purchase the bonds, thus financing the principal repayments, until the debt-servicing payments — budget revenues ratio does reach some extreme value. An increase in the debt or reduction of nominal GDP raises the probability of sovereign default expected by investors — other things held constant:

\[
\phi_d = \frac{k}{\tau} \times \delta \times \frac{D_t}{P_t \times Y_t},
\] (7)

where \(P_t\) is the price level, \(Y_t\) is the real output, \(D_t\) is the value of the debt outstanding, \(\tau\) is the tax rate, \(\delta\) is the share of debt, refinanced every moment \((0 \leq \delta \leq 1,\) the smaller is the value of \(\delta\) the higher is the duration of debt outstanding), \(1/\kappa\) is the critical value of debt-servicing payments — budget revenues ratio, specific for an individual country and estimated rationally by an investor. The values of \(\tau\) and \(\delta\) influence much the time of the debt default: weak tax administration and low duration hastens the budget crisis.

Thus, a supposed dependence of the expected probability of sovereign default on macroeconomic variables is based on the Ponzi scheme. Using a liquidity constraint I’ve modified the basic idea of Sargent and Wallace (1981), that “the public demand for bonds constrains the government by setting an upper limit of the real stock of the government bonds relative to the size of the economy”.

I assume that the government issues new bonds not only to pay off the old ones, but also to finance primary budget deficit (“strong” Ponzi scheme). The government supposes that additional expenditures would help to revive economy and to raise the budget revenues later on, thus, it interpreted current budget deficit as temporal. According to the “strong” Ponzi scheme the debt evolution is given by:

\[
\frac{D_t}{D_{t-1}} = c_r + R_g,
\] (8)

where \(c_r\) — is a fraction of the debt growth, determined by the volume of primary budget deficit (surplus).

An expected sovereign default dynamics is derived by log-linearizing and differentiating (7) with respect to time and plugging (8) into the obtained expression:

\[
\phi_d = (c_r + R_g - \pi_r - \gamma_r) \times \phi_d ,
\] (9)

where \(\pi_r\) is the inflation rate (actual is equal to expected), and \(\gamma_r\) is the rate of real GDP growth.

As it was demonstrated in the numerous studies (Edwards, 1993, 2002; Sachs, Tornell and Velasco, 1996), high correlation between the inflation rate and the rate of currency depreciation is a common feature of a number of emerging markets, including Russia (it grew significantly in the periods of high inflation, due to the growth in economy’s dollarization). Under these circumstances, the rate of currency depreciation determines the inflation dynamics. Taking into account this fact,
we use an assumption of linear dependence of the second “country” inflation rate on the rate of currency depreciation:

\[\pi_t = \beta_1 + \beta_2 \psi_t, \beta_2 > 0 \tag{10} \]

The real GDP growth was insensitive to the interest rate changes in a number of transition economies, including in Russia in the pre-crisis period (Smirnov, 1997). This was mainly caused by the incompleteness of the financial market and weak interest of the bankers in developing long-term lending. As a result the rate of the GDP growth is fixed and given by:

\[y_t = \bar{y} \tag{11} \]

Taking into account the assumptions of the GDP growth and exchange rate dynamics, the equation (9) could be presented as follows:

\[\dot{\phi}_t = \left[\phi_t + R_t - \beta_1 - \beta_2 \varepsilon_t - \bar{y} \right] \times \phi_t, \tag{9a} \]

The authorities of the second “country” could preserve the fiscal system solvent (the invariability of the debt-servicing payments — budget revenues ratio) by adjusting the interest rate, the budget deficit and the exchange rate policy in response to the shifts of the structural parameters (\(\beta_1, \beta_2 \)) and the rate of the GDP growth in order to satisfy:

\[c_t + R_t - \beta_1 - \beta_2 \varepsilon_t - \bar{y} = 0 \tag{12} \]

Combining (4a) and (12) one could obtain the condition of the stability for both the budget system and the currency market in the long run:

\[R_t \times (1 - \bar{\phi}) - \bar{\phi} \times (1 - l) - \frac{c_t + R_t - \beta_1 - \bar{y}_t}{\beta_2} - \alpha R_t = 0, \tag{13} \]

where \(\bar{\phi} \) is the target value of the debt-servicing payments — budget revenues ratio, maintained by the government of the second “country”.

According to (13) when determining the rate of currency depreciation, the authorities must take into consideration the size of the budget deficit and the characteristics of the interest rate policy. The rate of currency depreciation must be higher in the countries with the persistent budget deficit and the restrictive monetary policy. In the opposite case, the growth in the debt-servicing payments would eventually induce the sovereign default. Thus, if the rate of currency depreciation is in line with the inflation rate, thus ensuring constant level of the real exchange rate, it could be too low to stabilize the debt-servicing payments — budget revenues ratio.

If the authorities of the second “country” will maintain the budget balanced (\(c_t = 0 \)) and the international reserves (\(IR_t = 0 \)), they must adjust the interest rate and the exchange rate policy to external shocks, increasing the discount rate (\(R \)) and the rate of currency depreciation (\(\bar{R} \)) in response to a hike in the interest rate in the first (developed) “country” or an increase in the risk-aversion coefficient (\(\alpha \)):

\[R = \frac{\bar{\phi} \times (1 - l) + \alpha \times \beta_2 \times \bar{R}_t - \beta_1 - \bar{y}}{1 - \beta_1 \times (1 - \bar{\phi})}, \]

\[\frac{\partial R}{\partial \alpha} > 0, \frac{\partial R}{\partial R_t} > 0 \tag{14} \]

The change in the investors’ attitude may launch a program of self-destruction, when the protective hike in the interest rates to stop the capital outflow is not accompanied by an adjustment of the rate of currency depreciation. The growth in the debt-servicing payments — budget revenues ratio, associated with this policy, results in an increase of investors’ skepticism about the government solvency, thus making them reluctant to invest in the government bonds.

According to the model, the genesis of the Russian currency crisis could be presented as follows. High return on government debt obligations, associated with the government’s need to finance a large budget deficit, accompanied by restrictive monetary policy, together generated a massive capital inflow, on the one hand, and stimulated rapid debt accumulation, on the other hand. Capital inflow caused ruble overvaluation relative to the level compatible with long-term solvency of the government. Given that money supply and the interest rates are set at their target values, the inflation rate depends mostly on the rate of currency depreciation. Thus the drop in the latter lead to an increase in foreign-currency debt to tax revenues ratio. When investors estimated the Russian government debt as too high to service (this corresponded to an increase in the expected rate of default probability), they began to withdraw funds since the expected return on investment in Russian government debt obligations became less than return on bonds of the developed countries. The growth of the investors’ skepticism about the emerging markets associated with the East Asian crisis added much to the process. As a result of massive capital outflow the rate of currency depreciation jumped up and the government was compelled to freeze its debt-servicing payments.

The model is considered adequate if by plugging in it the actual values of the exogenous variables and initial values of the endogenous variables one could reproduce the motion of the latter. In order to test the adequacy of the model I simulate it by Power Sim program (v3.2). I plug in the model the actual pre-crisis (January 1996 — August 1998) returns on the GKOs and other macroeconomic variables. The parameters of the model in equations (6) and (10) were preliminary estimated by OLS, using an assumption that the “shadow” exchange rate was equal to the official ruble-dollar exchange rate in the initial period. The results were as follows:

\[\beta_1, \beta_2 \text{ is the pass-through coefficient. In the case of high inflation parameter } \beta_2 \text{ is not statistically different from 0 and parameter } \beta_1 \text{ is not statistically different from 1.} \]
Table 1. Parameter estimates

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimations (standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.067** (0.036)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.61* (0.277)</td>
</tr>
<tr>
<td>γ</td>
<td>-0.002^{10}</td>
</tr>
<tr>
<td>$\kappa = g_z \times \frac{\rho}{\alpha}$</td>
<td>0.102** (0.049)</td>
</tr>
</tbody>
</table>

Results of the simulation show that the model adequately reproduces the peculiarities of the situation on the Russian financial market in the pre-crisis period: the change in the direction of the capital flows in the mid-summer of 1997 and the consecutive growth in the debt-servicing payments — budget revenues ratio (Fig. 2a). The “shadow” exchange rate, calculated on the basis of the results of the simulation, has exceeded the official exchange rate just on the eve of the crisis — in April, 1998 (Fig. 3), — when the investors really began to flee the Russian financial market and the speculative attack on ruble started.

Protective interest rate hike by the monetary authorities, inspired by the IMF, was counterproductive, since it generated the growth in the debt-servicing payments and GDP contraction, while only marginally influencing the attractiveness of the government bonds. But loose monetary policy couldn’t change the situation radically. Montes and Popov (1999) argued that the monetary authorities could have prevented the debt crisis and default by inflating the debt through lowering the interest rate and subtle devaluation of the ruble (by 10—15%) on the eve of the crisis.

My results partly corroborate their idea. Moderately loose monetary policy on the eve of the crisis could have resulted in acceleration of the ruble depreciation, subtly affecting budgetary balance (Fig. 2b illustrates this situation). At that time the authorities could have avoided defaulting on the government debt only at the price of the exchange rate collapse and hyperinflation, whereas in the fall of 1997 (after the start of the EA-5 crisis) these measures could have been quite effective.

But at a more fundamental level, the collapse of the financial system could be prevented by the balanced fiscal policy. If the primary budget deficit stood at zero in 1996—1998, the debt-servicing payments — budget revenues ratio would not exceed 15% of the critical value and the rate of the “shadow” exchange rate depreciation would be below zero in August, 1998 (Fig. 2c). It follows that had the Russian authorities applied the budget restriction of 3% of GDP, used in EC countries, they could only have the crisis postponed (Fig. 2d), relegating the collapse of the fixed band exchange rate policy to 4Q1998. This shows why the budget restriction, being good for the developed countries, is not always suitable for the emerging markets.

9 Parameter h is estimated by equation (6), using monthly data for the period 1.1994—1.1996, when Russian ruble was allowed to float. While estimating parameter k was fixed at 0.45 (the latter was the critical level in August, 1998) and parameters l and δ stood at 0 and 0.2 respectively. One asterisk denotes that corresponding coefficient is significant at 95% confidence level, whereas two asterisks denote that it’s significant at 90% confidence level.

10 The value of γ is equal to a mean rate of the GDP growth in 1996—1998 in Russia.

11 The value of ϕ_0 is calculated by equation (7). The mean duration of debt equaled 0.25 and the mean monthly tax revenues totaled 13.5% of GDP in 1996—1998. The parameter k stood at 0.45 (the Russian government refused from servicing the debt, when the debt-servicing payments — budget revenues ratio reached 2.2). We also use the assumptions that the government is ready to pay 80% of the debt after its restructuring ($l = 0.8$) and the mean coefficient of risk aversion α equals 1.1.
According to the model, the Russian currency crisis was generated to a considerable extent by the low level of GDP monetization, high sensitivity of inflation rate to the rate of currency depreciation, the prevalence of the short-term obligations in the debt structure and the weak tax administration. The first two ones were in charge of the high sensitivity of the budget to the changes in the investors’ behavior and the last two ones were responsible for the high debt-servicing payments despite the domestic-currency debt was moderate by the international standards. If the tax revenues and debt duration were twice as high as their actual rates, the debt-servicing payments — budget revenues ratio would not exceed 18% of the critical value in August, 1998 (Fig. 4e).

![Figure 2b. Evolution of the shadow rate of currency depreciation and debt-servicing payments — budget revenues ratio under condition of loose monetary policy in November 1997 — August 1998](image)

\(\varphi_0 = 0.046; \epsilon_0 = 0.014; R = \text{monthly return on 90-days GKO until November 1997, since then} \)
\(R_t = 0.01; R' = \text{average monthly return on 90-days US T-bills; } R^* = \text{monthly return on 90-days US T-bills; } c_t = \text{budget deficit — domestic-currency debt outstanding ratio by the end of month. } T=1 \) (January 1996); \(T=32 \) (August 1998)

According to the model, the Russian currency crisis was generated to a considerable extent by the low level of GDP monetization, high sensitivity of inflation rate to the rate of currency depreciation, the prevalence of the short-term obligations in the debt structure and the weak tax administration. The first two ones were in charge of the high sensitivity of the budget to the changes in the investors’ behavior and the last two ones were responsible for the high debt-servicing payments despite the domestic-currency debt was moderate by the international standards. If the tax revenues and debt duration were twice as high as their actual rates, the debt-servicing payments — budget revenues ratio would not exceed 18% of the critical value in August, 1998 (Fig. 4e).

![Figure 2c. Evolution of the shadow rate of currency depreciation and debt-servicing payments — budget revenues ratio under condition of zero budget deficit](image)

\(\varphi_0 = 0.046; \epsilon_0 = 0.014; R = \text{monthly return on 90-days GKO;} \)
\(R' = \text{monthly return on 90-days US T-bills;} \)
\(c_t = 0. \) (January 1996); \(T=32 \) (August 1998)

IV. Conclusions

This paper provides a theoretical framework, which suggests an explanation of the role of fiscal and monetary factors in the Russian currency crises, which was combined with the sovereign default crisis. It was shown that mistakes of Russian government and monetary authorities were at the root of the crisis. A combination of high interest rates with persistent budget deficit, high sensitivity of the rate of inflation to the rate of currency depreciation, low duration of debt and low GDP monetization together resulted in exchange rate appreciation and rapid domestic-currency debt accumulation. When investors estimated the Russian government debt as too high to service, they began to withdraw funds.
The budget deficit was too high to sustain. But its reduction to the 3% of GDP level couldn’t make the financial system sounder. The budget constraints, well suited for the developed economies, seem to be too loose for the emerging markets.

The decision of the Bank of Russia to protect ruble by an interest rate hike in the mid-summer of 1998 was counterproductive because it only accelerated the debt default coming through the growth of the debt to tax revenues ratio. It also made the home financial market more vulnerable to capital outflow due to GDP contraction and deterioration of the banks’ liquidity. However, loose monetary policy couldn’t be regarded as remedy in the long run either. Debt default crisis could be prevented in Russia in 1998 only at the price of the exchange rate collapse and hyperinflation.

The results of monetary policy are primarily determined by the state of debt. The possibility that hike in the discount rate could prevent currency crisis without destruction of the fiscal system is higher if the domestic-currency debt is small and is characterized by the prevalence of the long-term obligations. In the

Figure 2d. Evolution of the shadow rate of currency depreciation and debt-servicing payments — budget revenues ratio under condition of the budget deficit stood at 3% of GDP
(φ = 0.046; ε = 0.014; R = monthly return on 90-days GKO; R* = monthly return on 90-days US T-bills; c = 3% of monthly GDP — domestic-currency debt outstanding ratio by the end of month. T=1 (January 1996); T=32 (August 1998))

Figure 2e. Evolution of the shadow rate of currency depreciation and debt-servicing payments — budget revenues ratio under condition of doubling of the duration of domestic-currency debt obligations and tax revenues — GDP ratio
(φ = 0.011; ε = 0.014; R = monthly return on 90-days GKO; R* = monthly return on 90-days US T-bills; c = budget deficit — domestic-currency debt outstanding ratio by the end of month. T=1 (January 1996); T=32 (August 1998))

Figure 3. An official and “shadow” exchange rates
opposite case, restrictive monetary policy undermines confidence of investors in
the ability of the government to service its outstanding debt, thus provoking ca-
pital outflow.

The results of the study are rather close to the ones of Flood and Jeanne (2000),
who found that increasing the domestic-currency interest rate prior to a speculat-
ive attack, with no other policy adjustments, was never an effective exchange-rate
defense. It stands to reason that by introducing risk factor in the uncovered interest
rate parity equation they reproduce the situation, which is close to the actual one
in the emerging markets, but not in the developed countries.

The impact of restrictive monetary policy on behavior of investors also depen-
ds much on the sensitivity of output growth rate to the interest rate volatility, mon-
etization of GDP and a share of imported goods and services in consumption. If
output level is highly sensitive to interest rate changes, restrictive monetary policy
causes GDP contraction, thus making internal debt operation more complicated.
Low GDP monetization and high inflation rate sensitivity to the rate of currency
depreciation cause disinflationary effect of capital inflow, and thus an increase in
the real debt.

Literature

stops, the real exchange rate, and fiscal sustainability: Argentina’s lessons.” Work-

the Asian currency and financial crisis? A macroeconomic overview.” Working Pa-

Edwards, Sebastian (1993). “Exchange rates as nominal anchors.” Weltwirt-
 schaftliches Archiv, № 129.

Eichengreen, Barry, and Andrew Rose. (2001). “Does It Pay to Defend Against
a Speculative Attack?”, unpublished manuscript.

and Deployment of Processes.” Report of the Institute for the Economy in
Transition, Moscow.

Exchange Rate.” Working Paper № 00/159, International Monetary Fund, Oc-
tober 2000.

Money, Credit and Banking 11, 311—325.

Montes, Manuel F., and Vladimir V. Popov (1999). The Asian crisis turns glo-
bal. Singapore: Institute of Southeast Asian Studies.

Radelet, Steven, and Jeffrey Sachs (1998). “The Onset of the East Asian Fi-
nancial Crisis.” Working Paper № 6680, National Bureau of Economic Research,
August 1998.

Sachs, Jeffrey, Aaron Tornell, and Andres Velasco (1996). “Financial Crises in
Emerging Markets: The Lessons from 1995.” Brookings Papers on Economic Ac-
 tivity № 1, 147—217.

arithmetic.” Federal Reserve Bank of Minneapolis, Quarterly Review, 5, 5—17.

the Period of Financial Stabilization.” HSE Economic Journal 5, №1, 42—61
(in Russian).

Moscow: HSE (in Russian).

Solodkov, Vassily, and Charles P. Rock (2001). “Russian Exchange Rate and
Monetary Policies, 1994—2000, and the Failure to Create a Sustainable Ban-
k ing System: The Lost Opportunities of the 1990s.” Report, delivered at the An-
nual Meetings of the Eastern Economics Association.
Публикуемые в серии работы были представлены на научных семинарах, организованных в МИЭФ в рамках научной программы МИЭФ — ГУ ВШЭ, координируемой Международным академическим комитетом МИЭФ. Программа реализуется с 2003 г. при участии Директора проекта МИЭФ со стороны Лондонской школы экономики и политических наук профессора Ричарда Джекмана и старшего академического советника Амоса Витцума.

Papers published in this series were presented at the ICEF research seminars within the frame of its research programme coordinated by the International Academic Committee of ICEF. The programme has been implemented since 2003 and supervised by ICEF Project Director at LSE Professor Richard Jackman and Senior Academic Advisor Dr. Amos Witztum.

Препринт WP9/2005/03
Серия WP9
Исследования по экономике и финансам —
Research in economics and finance

Редактор серии А.В. Белянин
Внешний редакционный совет —
В.М. Полтерович (ЦЭМИ РАН и РЭШ),
O. Sussman (Oxford Business School)

В.К. Шпрингель

Российский финансовый кризис: почему девальвация рубля сопровождалась дефолтом по государственному долгу
(на английском языке)

Публикуется в авторской редакции

Выпускающий редактор А.В. Заиченко
Технический редактор Ю.Н. Петрина

ЛР № 020832 от 15 октября 1993 г.
Отпечатано в типографии ГУ ВШЭ с представленного оригинал-макета.
Формат 60х84/16. Бумага офсетная. Тираж 150 экз. Уч.-изд. л. 1,6.
Усл. печ. л. 1,4. Заказ № . Изд. № 496.

ГУ ВШЭ. 125319, Москва, Кочновский проезд, 3
Типография ГУ ВШЭ. 125319, Москва, Кочновский проезд, 3
Тел.: (095) 134-16-41; 134-08-77
Факс(095) 134-08-31