CONTRIBUTIONS TO GAME THEORY AND MANAGEMENT

Volume IV

The Fourth International Conference
Game Theory and Management
June 28-30, 2010, St. Petersburg, Russia

Collected papers
Edited by Leon A. Petrosyan and Nikolay A. Zenkevich

Graduate School of Management
St. Petersburg University
St. Petersburg
2011

The collection contains papers accepted for the Fourth International Conference Game Theory and Management (June 28–30, 2010, St. Petersburg University, St. Petersburg, Russia). The presented papers belong to the field of game theory and its applications to management.

The volume may be recommended for researches and post-graduate students of management, economic and applied mathematics departments.

© Copyright of the authors, 2011
© Graduate School of Management, SPbU, 2011

ISBN 978-5-9924-0069-4

Успехи теории игр и менеджмента. Вып. 4. Сб. статей четвертой международной конференции по теории игр и менеджменту / Под ред. Л.А. Петросяна, Н.А. Зенкевича. – СПб.: Высшая школа менеджмента СПбГУ, 2011. – 514 с.

Издание представляет интерес для научных работников, аспирантов и студентов старших курсов университетов, специализирующихся по менеджменту, экономике и прикладной математике.

© Коллектив авторов, 2011
© Высшая школа менеджмента СПбГУ, 2011
Contents

Preface ... 6

Graph Searching Games with a Radius of Capture 8
Tatiana V. Abramovskaya, Nikolai N. Petrov

Non-Cooperative Games with Chained Confirmed Proposals 19
G. Attanasi, A. García-Gallego, N. Georganzís, A. Montesano

The II-strategy: Analogies and Applications 33
A. A. Azamov, B. T. Šamatov

About Some Non-Stationary Problems of Group Pursuit
with the Simple Matrix ... 47
Alexander Bannikov, Nikolay Petrov

Mathematical Model of Diffusion in Social Networks 63
Olga Bogdanova, Elena Paričina

Product Diversity in a Vertical Distribution Channel
under Monopolistic Competition 71
Igor Bykadorov, Sergey Kokovin, Evgeny Zhelobodko

Strong Strategic Support of Cooperative Solutions
in Differential Games .. 105
Sergey Chistyakov, Leon Petrosyan

Strategic Bargaining and Full Efficiency 112
Xianhua Dai, Hong Li, Xing Tong

Socially Acceptable Values for Cooperative TU Games 117
Theo Driessen, Tadeusz Radzik

Auctioning Big Facilities under Financial Constraints 132
Maria Angeles de Frutos, Maria Paz Espinosa

Numerical Study of a Linear Differential Game
with Two Pursuers and One Evader 154
Sergey S. Ganebny, Sergey S. Kumkov, Stéphane Le Méneç, Valerii S. Patsko

The Dynamic Procedure of Information Flow Network 172
Hongwei GAO, Zuoyi LIU, Yeming DAI

Game Theory Approach for Supply Chains Optimization 188
Mansur G. Gasratov, Victor V. Zakharov

Stochastic Coalitional Games with Constant Matrix
of Transition Probabilities 199
Xeniya Grigorieva
Cash Flow Optimization in ATM Network Model 213
 Elena Gubar, Maria Zubareva, Julia Merzljakova

Stable Families of Coalitions for Network Resource Allocation Problems .. 223
 Vladimir Gurvich, Sergey Schreider

Signaling Managerial Objectives to Elicit Volunteer Effort 231
 Gert Huybrechts, Jurgen Willems, Marc Jegers, Jemima Bidee, Tim Van-tilborgh, Roland Pepermans

Two Solution Concepts for TU Games with Cycle-Free Directed Cooperation Structures 241
 Anna Khmelnitskaya, Dolf Talman

Tax Auditing Models with the Application of Theory of Search 266
 Suriya Sh. Kumacheva

Bargaining Powers, a Surface of Weights, and Implementation of the Nash Bargaining Solution 274
 Vladimir D. Mateeенко

On Games with Constant Nash Sum ... 294
 Pierre von Mouché

Claim Problems with Coalition Demands 311
 Natalia I. Naumova

Games with Differently Directed Interests and Their Application to the Environmental Management 327
 Guennady A. Ougolnitsky

Memento Ludi: Information Retrieval from a Game-Theoretic Perspective .. 339
 George Parfionov, Roman Zapatrin

The Fixed Point Method Versus the KKM Method 347
 Sehie Park

Proportionality in NTU Games: on a Proportional Excess Invariant Solution ... 361
 Sergei L. Pechersky

On a Multistage Link Formation Game .. 368
 Leon Petrosyan, Artem Sedakov

Best Response Digraphs for Two Location Games on Graphs 378
 Erich Prisner

Uncertainty Aversion and Equilibrium in Extensive Games 389
 Jörn Rothe
Nash Equilibrium in Games with Ordered Outcomes 407
Victor V. Rozen

Cooperative Optimality Concepts
for Games with Preference Relations 421
Tatiana F. Savina

A Fuzzy Cooperative Game Model for Configuration
Management of Open Supply Networks 433
Leonid B. Sheremetov, Alexander V. Smirnov

Modeling of Environmental Projects under Condition
of a Random Time Horizon ... 447
Ekaterina Shevkoplyas, Sergey Kostyunin

A Data Transmission Game in OFDM Wireless Networks
Taking into Account Power Unit Cost 460
Anton Toritsyn, Rimma Salakhieva, Andrey Garnaev

Strict Proportional Power and Fair Voting Rules in Committees . 473
František Turnovec

Subgame Consistent Solution for Random-Horizon
Cooperative Dynamic Games .. 489
David W.K. Yeung, Leon A. Petrosyan

Efficient CS-Values Based on Consensus and Shapley Values 502
Alexandra B. Zinchenko, Polina P. Provotorova and George V. Mironenko
Cooperative Optimality Concepts for Games with Preference Relations

Tatiana F. Savina
Saratov State University,
Faculty of Mechanics and Mathematics,
Astakhanskaya St. 83, Saratov, 410012, Russia
E-mail: suri-cat@yandex.ru

Abstract. In this paper we consider games with preference relations. The cooperative aspect of a game is connected with its coalitions. The main optimality concepts for such games are concepts of equilibrium and acceptance. We introduce a notion of coalition homomorphism for cooperative games with preference relations and study a problem concerning connections between equilibrium points (acceptable outcomes) of games which are in a homomorphic relation. The main results of our work are connected with finding of covariant and contravariant homomorphisms.

Keywords: Nash equilibrium, Equilibrium, Acceptable outcome, Coalition homomorphism

1. Introduction

We consider a n-person game with preference relations in the form

\[G = \langle (X_i)_{i \in N}, A, F, (\rho_i)_{i \in N} \rangle \]

(1)

where \(N = \{1, \ldots, n\} \) is a set of players, \(X_i \) is a set of strategies of player \(i (i \in N) \), \(A \) is a set of outcomes, realization function \(F \) is a mapping of set of situations \(X = X_1 \times \ldots \times X_n \) in the set of outcomes \(A \) and \(\rho_i \subseteq A^2 \) is a preference relation of player \(i \). In general case each \(\rho_i \) is an arbitrary reflexive binary relation on \(A \).

Assertion \(a_1 \preccurlyeq a_2 \) means that outcome \(a_1 \) is less preference than \(a_2 \) for player \(i \). Given a preference relation \(\rho_i \subseteq A^2 \), we denote by \(\rho_i^s = \rho_i \cap \rho_i^{-1} \) its symmetric part and \(\rho_i^\ast = \rho_i \setminus \rho_i^s \) its strict part (see Savina, 2010).

The cooperative aspect of a game is connected with its coalitions. In our case we can define for any coalition \(T \subseteq N \) its set of strategies \(X_T \) in the form

\[X_T = \prod_{i \in T} X_i. \]

(2)

We construct a preference relation of coalition \(T \) with help of preference relations of players which form the coalition. We denote a preference relation for coalition \(T \) by \(\rho_T \). The following condition is minimum requirement for preference of coalition \(T \):

\[a_1 \rho_T^\ast a_2 \implies (\forall i \in T) a_1 \rho_i^\ast a_2. \]

(3)

In section 2 we consider some important concordance rules. Let \(\mathcal{K} \) be a fix collection of coalitions. In section 3 we introduce the following cooperative optimality concepts: Nash \(\mathcal{K} \)-equilibrium, \(\mathcal{K} \)-equilibrium, quite \(\mathcal{K} \)-acceptance, \(\mathcal{K} \)-acceptance and connections between these concepts are established in Theorem 1. In next section we consider coalition homomorphisms. The main results of our paper are presented in section 5.
2. Concordance rules for preferences of players

To construct a preference relation for coalition \(T \) we need to have preference relations of all players its coalition and also certain rule for concordance of preferences of players. Such set of rules is called \textit{concordance rule}. It is known that important concordance rules are the following.

2.1. Pareto concordance

\textbf{Definition 1.} Outcome \(a_2 \) is said to (non strict) dominate by Pareto outcome \(a_1 \) for coalition \(T \) if \(a_2 \) is better (not worse) than \(a_1 \) for each \(i \in T \), i.e.

\[
a_1 \leq_T a_2 \Leftrightarrow (\forall i \in T) \ a_1 \not\preceq_T a_2. \tag{4}
\]

In this case symmetric part of preference relation for coalition \(T \) is defined by the formula

\[
a_1 \not\preceq_T a_2 \Leftrightarrow (\forall i \in T) \ a_1 \not\preceq_T a_2 \tag{5}
\]

and strict part is defined by the formula

\[
a_1 \prec_T a_2 \Leftrightarrow \begin{cases} (\forall i \in T) \ a_1 \not\preceq_T a_2, & \\
(\exists j \in T) \ a_1 \prec_T a_2 & \end{cases} \tag{6}
\]

Thus, outcome \(a_2 \) dominate \(a_1 \) if and only if \(a_2 \) is better than \(a_1 \) for all players of coalition \(T \) and strictly better at least for one player \(j \in T \).

2.2. Modified Pareto concordance

In this case strict part of preference relation \(\rho_T \) is defined by the equivalence

\[
a_1 \prec_T a_2 \Leftrightarrow (\forall i \in T) \ a_1 \not\preceq_T a_2, \tag{7}
\]

and symmetric part is given by

\[
a_1 \not\preceq_T a_2 \Leftrightarrow (\forall i \in T) \ a_1 \not\preceq_T a_2. \tag{8}
\]

2.3. Concordance by majority rule

Outcome \(a_2 \) is strictly better than outcome \(a_1 \) for coalition \(T \) if and only if \(a_2 \) is strictly better than \(a_1 \) for majority of players of coalition \(T \), i.e.

\[
a_2 \succ_T a_1 \Leftrightarrow \left| \{ i \in T: a_2 \succeq_T a_1 \} \right| > \left| \frac{T}{2} \right|. \]

For this rule, symmetric part of preference relation \(\rho_T \) is given by the equivalence

\[
a_1 \not\succ_T a_2 \Leftrightarrow \left| \{ i \in T: a_1 \not\succeq_T a_2 \} \right| > \left| \frac{T}{2} \right|. \]
2.4. Concordance under summation of payoffs

For games with payoff functions in the form $H = \langle (X_i)_{i \in N}, (u_i)_{i \in N} \rangle$, the following concordance rule of preferences for coalition T is used

$$x^1 \rho_T x^2 \iff \sum_{i \in T} u_i(x^1) \leq \sum_{i \in T} u_i(x^2)$$

and the strict part of ρ_T is given by:

$$x^1 \rho_T < x^2 \iff \sum_{i \in T} u_i(x^1) < \sum_{i \in T} u_i(x^2).$$

In this case preference relation ρ_T and its strict part are transitive.

Remark 1. Let $\{T_1, \ldots, T_m\}$ be partition of set N. Then collection of strategies of these coalitions $(x_{T_1}, \ldots, x_{T_m})$ define a single situation $x \in X$ in game G. Namely, the situation x is such a situation that its projection on T_k is x_{T_k} ($k = 1, \ldots, m$). Hence we can define a realization function F by the rule: $F(x_{T_1}, \ldots, x_{T_m}) \overset{df}{=} F(x)$. In particular if T is one fix coalition then the function $F(x_T, x_{N \setminus T})$ is defined.

Remark 2. Consider a game with payoff functions $H = \langle (X_i)_{i \in N}, (u_i)_{i \in N} \rangle$ where $u_i : \prod_{i \in N} X_i \to \mathbb{R}$ is a payoff function for players i. Then we can define the preference relation of player i by the formula

$$x^1 \rho_i x^2 \iff u_i(x^1) \leq u_i(x^2).$$

Let the preference relation of coalition T be Pareto dominance, i.e.

$$x^1 \rho_T x^2 \iff (\forall i \in T) \ u_i(x^1) \leq u_i(x^2).$$

Then considered above concordance rules is becoming well known rules for cooperative games with payoff functions. (see Moulin, 1981).

3. Coalitions optimality concepts

In this part we consider games with preference relations of the form (1). For games of this class two types of optimality concepts are introduced and connections between these concepts are established.

Let \mathcal{K} be an arbitrary fixed family of coalitions of players N.

3.1. Equilibrium concepts

Definition 2. A situation $x^0 = (x_i^0)_{i \in N} \in X$ is called Nash \mathcal{K}-equilibrium (Nash \mathcal{K}-equilibrium point) if for any coalition $T \in \mathcal{K}$ and any strategy $x_T \in X_T$ the condition

$$F(x^0 \parallel x_T) \overset{\rho_T}{\leq} F(x^0)$$

holds.

Remark 3. 1. In the case $\mathcal{K} = \{\{1\}, \ldots, \{n\}\}$, Nash \mathcal{K}-equilibrium is Nash equilibrium in the usual sense.
2. In the case $\mathcal{K} = \{N\}$, a situation x^0 is Nash $\{N\}$–equilibrium means $F(x^0)$ is greatest element under preference ρ_T.

We now define some generalization of Nash equilibrium.

A strategy $x^0_T \in X_T$ is called a refutation of the situation $x \in X$ by coalition T if the condition

$$F(x \parallel x^0_T) \stackrel{\rho_T}{>} F(x)$$

holds.

Definition 3. A situation $x^0 = (x^0_i)_{i \in N} \in X$ is called \mathcal{K}–equilibrium point if any coalition $T \in \mathcal{K}$ does not have a refutation of this situation, i.e. for any coalition $T \in \mathcal{K}$ and any strategy $x_T \in X_T$ the condition

$$F(x^0 \parallel x_T) \not\stackrel{\rho_T}{>} F(x^0)$$

holds.

Remark 4. 1. In the case $\mathcal{K} = \{\{1\}, \ldots, \{n\}\}$, \mathcal{K}–equilibrium is equilibrium in the usual sense.

2. In the case $\mathcal{K} = \{N\}$, \mathcal{K}–equilibrium point is Pareto optimal.

3. In the case $\mathcal{K} = 2^N$, \mathcal{K}–equilibrium point is called strong equilibrium one.

3.2. Acceptable outcomes and acceptable situations

A strategy $x^0_T \in X_T$ is called an objection of coalition T against outcome $a \in A$ if for any strategy of complementary coalition $x_{N \setminus T} \in X_{N \setminus T}$ the condition

$$F(x^0_T, x_{N \setminus T}) \stackrel{\rho_T}{>^*} a$$

holds.

Definition 4. An outcome $a \in A$ is called acceptable for coalition T if this coalition does not have objections against this outcome.

An outcome $a \in A$ is said to be \mathcal{K}–acceptable if it is acceptable for all coalitions $T \in \mathcal{K}$, that is

$$(\forall T \in \mathcal{K})(\forall x_T \in X_T)(\exists x_{N \setminus T} \in X_{N \setminus T}) F(x_T, x_{N \setminus T}) \not\stackrel{\rho_T}{>^*} a. \quad (13)$$

A strategy $x^0_T \in X_T$ is called an objection of coalition T against situation $x^* \in X$ if this strategy is an objection against outcome $F(x^*)$.

We define also a quite acceptable concept by changing quantifiers: $\forall x_T \exists x_{N \setminus T} \rightarrow \exists x_{N \setminus T} \forall x_T$.

Definition 5. An outcome a is called quite \mathcal{K}–acceptable for family of coalitions \mathcal{K} if the condition

$$(\forall T \in \mathcal{K})(\exists x_{N \setminus T} \in X_{N \setminus T})(\forall x_T \in X_T) F(x_{N \setminus T}, x_T) \not\stackrel{\rho_T}{>^*} a \quad (14)$$

holds.

A situation $x^0 \in X$ is called quite \mathcal{K}–acceptable if outcome $F(x^0)$ is quite \mathcal{K}–acceptable one.
These optimality concepts are analogous to well known optimality concepts of games with payoff functions (see Moulin, 1981).

Now we consider connections between these optimality concepts.

Lemma 1. Nash K–equilibrium point is also a K–equilibrium point but converse is false.

Proof (of lemma). Let $x^0 = (x^0_i)_{i \in N}$ be Nash K–equilibrium point then for any coalition $T \in K$ and any strategy $x_T \in X_T$ the condition $F(x^0 \parallel x_T) \overset{\rho_T}{\lesssim} F(x^0)$ holds. Suppose $F(x^0 \parallel x_T) \overset{\rho_T}{>} F(x^0)$. The system of conditions

$$
\begin{cases}
F(x^0 \parallel x_T) \overset{\rho_T}{\lesssim} F(x^0) \\
F(x^0 \parallel x_T) \overset{\rho_T}{>} F(x^0)
\end{cases}
$$

is false. Hence, $F(x^0 \parallel x_T) \overset{\rho_T}{\not>} F(x^0)$. □

Thus, Nash K–equilibrium is K–equilibrium. But the converse is false. Indeed, consider

Example 1. Consider an antagonistic game G whose realization function F is given by Table 1 and preference relation for player 1 by Diagram 1; preference relation of player 2 is given by inverse order, $K = \{\{1\}, \{2\}\}$.

<table>
<thead>
<tr>
<th>F</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>s_2</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Situation (s_1, t_1) is K–equilibrium. Since $F(s_1, t_1) = a$ and $a \parallel b, a \parallel c$ (i.e. a and b is incomparable, a and c is incomparable) then (s_1, t_1) is not Nash K–equilibrium.

Remark 5. If all preference relations $(\rho_T)_{T \in K}$ is linear then Nash K–equilibrium and K–equilibrium are equivalent.

Proposition 1. An objection of coalition T against situation x^* is also a refutation of this situation.

Proof (of proposition). Let x^0_T be an objection of coalition T against situation x^*. Then according to definition of objection the strategy x^0_T is an objection of coalition T against outcome $F(x^*)$, i.e. for any strategy of complementary coalition $x_{N \setminus T} \in X_{N \setminus T}$ the condition $F(x^0_T, x_{N \setminus T}) \overset{\rho_T}{>} F(x^*)$ holds.

Let us take $x_{N \setminus T} = x^*_{N \setminus T}$ as a strategy of complementary coalition, we have $F(x^0_T, x^*_{N \setminus T}) \overset{\rho_T}{>} F(x^*)$.

Since strategy $x^*_{N \setminus T}$ is an arbitrary one then we get strategy x^0_T is a refutation of this situation. □
Corollary 1. Any \mathcal{K}-equilibrium point is also \mathcal{K}-acceptable.

We have to prove the more strong assertion.

Lemma 2. Any \mathcal{K}-equilibrium point is also quite \mathcal{K}-acceptable.

Proof (of lemma). Let x^0 be \mathcal{K}-equilibrium point. Suppose $x_{N \setminus T} = x_{N \setminus T}^0$ for all coalitions $T \in \mathcal{K}$. Then for any coalition $T \in \mathcal{K}$ we have $F(x_{N \setminus T}, x_T) = F(x_{N \setminus T}^0, x_T) \rho_T \not\succ F(x^0)$. Hence, x^0 is quite \mathcal{K}-acceptable. \qed

Lemma 3. Any quite \mathcal{K}-acceptable outcome is \mathcal{K}-acceptable.

The proof of Lemma 3 is obvious.

The main result of the part 3 is the following theorem.

Theorem 1. Consider introduced above coalitions optimality concepts: Nash \mathcal{K}-equilibrium, \mathcal{K}-equilibrium, quite \mathcal{K}-acceptance, \mathcal{K}-acceptance. Then each consequent condition is more weak than preceding, i.e.

Nash \mathcal{K}-equilibrium \Rightarrow \mathcal{K}-equilibrium \Rightarrow quite \mathcal{K}-acceptance \Rightarrow \mathcal{K}-acceptance.

The proof of Theorem 1 follows from Lemmas 1, 2, 3.
4. Coalition homomorphisms for games with preference relations

Let

\[G = \langle (X_i)_{i \in N}, A, F, (\rho_i)_{i \in N} \rangle \]

and

\[\Gamma = \langle (Y_i)_{i \in N}, B, \Phi, (\sigma_i)_{i \in N} \rangle \]

be two games with preference relations of the players \(N \).

Any \((n + 1)-\)system consisting of mappings \(f = (\varphi_1, \ldots, \varphi_n, \psi) \) where for any \(i = 1, \ldots, n \), \(\varphi_i : X_i \to Y_i \) and \(\psi : A \to B \), is called a \textit{homomorphism} from game \(G \) into game \(\Gamma \) if for any \(i = 1, \ldots, n \) and any \(a_1, a_2 \in A \) the following two conditions

\[a_1 \rho_i \preceq a_2 \Rightarrow \psi(a_1) \sigma_i \preceq \psi(a_2), \quad (i = 1, \ldots, n) \]

(15)

\[\psi(F(x_1, \ldots, x_n)) = \Phi(\varphi_1(x_1), \varphi_2(x_2), \ldots, \varphi_n(x_n)) \]

(16)

are satisfied.

A homomorphism \(f \) is said to be \textit{strict homomorphism} if system of the conditions

\[a_1 \rho_i < a_2 \Rightarrow \psi(a_1) \sigma_i < \psi(a_2), \quad (i = 1, \ldots, n) \]

(17)

\[a_1 \rho_i \sim a_2 \Rightarrow \psi(a_1) \sigma_i \sim \psi(a_2) \quad (i = 1, \ldots, n) \]

(18)

holds instead of condition (15).

A homomorphism \(f \) is said to be \textit{regular homomorphism} if the conditions

\[\psi(a_1) < \psi(a_2) \Rightarrow a_1 < a_2, \]

(19)

\[\psi(a_1) \sim \psi(a_2) \Rightarrow \psi(a_1) = \psi(a_2) \]

(20)

hold.

A homomorphism \(f \) is said to be \textit{homomorphism "onto"}, if each \(\varphi_i (i = 1, \ldots, n) \) is a mapping "onto".

Now we introduce a concept of coalition homomorphism.

For the first step, we need to fix some rule for concordance of preferences; recall that the preference relation for coalition \(T \) denoted by \(\rho_T \).

Definition 6. A homomorphism \(f \) is said to be:

- \textit{a coalition homomorphism} if it preserves preference relations for all coalitions,
 i.e. for any coalition \(T \subseteq N \) the condition

\[a_1 \rho_T \preceq a_2 \Rightarrow \psi(a_1) \sigma_T \preceq \psi(a_2) \]

(21)

holds;

- \textit{a strict coalition homomorphism} if for any coalition \(T \subseteq N \) the system of the conditions

\[\begin{cases}
 a_1 \rho_T < a_2 \Rightarrow \psi(a_1) \sigma_T < \psi(a_2), \\
 a_1 \rho_T \sim a_2 \Rightarrow \psi(a_1) \sigma_T \sim \psi(a_2)
\end{cases} \]

(22)

is satisfied;
– a regular coalition homomorphism if for any coalition $T \subseteq N$ the system of the conditions

$$
\begin{align*}
\psi(a_1) &<_{\sigma_T} \psi(a_2) \Rightarrow a_1 <_{\rho_T} a_2, \\
\psi(a_1) &\not<_{\sigma_T} \psi(a_2) \Rightarrow \psi(a_1) = \psi(a_2)
\end{align*}
$$

(23)

is satisfied.

It is easy to see that the following assertion is true.

Lemma 4. For Pareto concordance (and also for modified Pareto concordance), any surjective homomorphism from G into Γ is a surjective coalition homomorphism.

Lemma 5. For Pareto concordance (and also for modified Pareto concordance), any strict homomorphism from G into Γ is a strict coalition homomorphism.

Proof (of lemma 5). We consider Pareto concordance for preferences as a concordance rule. Verify the condition of system (22) for preference relation ρ_T. According to definition of Pareto concordance the condition $a_1 <_{\rho_T} a_2$ is equivalent system

$$
\begin{align*}
(\forall i \in T) & a_1 <_{\sigma_i} a_2, \\
(\exists j \in T) & a_1 <_{\sigma_j} a_2.
\end{align*}
$$

Since strict homomorphism is homomorphism then from the first condition of system it follows that $(\forall i \in T) \psi(a_1) <_{\sigma_T} \psi(a_2)$. Since homomorphism f is strict then $(\exists j \in T) \psi(a_1) <_{\sigma_T} \psi(a_2)$.

From last two conditions we get $\psi(a_1) <_{\sigma_T} \psi(a_2)$.

Now according to definition of symmetric part of relation ρ_T we have $a_1 \not<_{\rho_T} a_2 \iff (\forall i \in T) a_1 \not<_{\sigma_i} a_2$. Since homomorphism f is strict then we get $(\forall i \in T) \psi(a_1) \not<_{\sigma_T} \psi(a_2)$, i.e. $\psi(a_1) \not<_{\sigma_T} \psi(a_2)$. ☐

Now we consider modified Pareto concordance for preferences of players as a concordance rule.

Lemma 6. For modified Pareto concordance, any regular homomorphism from G into Γ is a regular coalition homomorphism.

Proof (of lemma 6). Verify the condition (23) for strict part of preference relation σ_T. According to definition of modified Pareto concordance for preferences the condition $\psi(a_1) <_{\sigma_T} \psi(a_2)$ is equivalent $(\forall i \in T) \psi(a_1) <_{\sigma_i} \psi(a_2)$. Since homomorphism f is regular then we have $(\forall i \in T) a_1 <_{\rho_T} a_2$, i.e. $a_1 <_{\rho_T} a_2$.

Verify the condition (23) for symmetric part of σ_T. According to definition of modified Pareto concordance we have

$$
\psi(a_1) \not<_{\sigma_T} \psi(a_2) \iff (\forall i \in T) \psi(a_1) \not<_{\sigma_i} \psi(a_2).
$$

Since homomorphism f is regular then from the last condition it follows that $(\forall i \in T) \psi(a_1) = \psi(a_2)$, i.e. $\psi(a_1) = \psi(a_2)$. ☐
5. The main results

The main result states a correspondence between sets of K-acceptable outcomes and K-equilibrium situations of games which are in homomorphic relations under indicated types.

A homomorphism f is said to be covariant if f-image of any optimal solution in game G is an optimal solution in Γ.

A homomorphism f is said to be contrvariant if f-preimage of any optimal solution in game G is an optimal solution in G.

Theorem 2. For Nash K–equilibrium, any surjective homomorphism is covariant under Pareto concordance and under modified Pareto concordance also.

Proof (of theorem 2). We consider Pareto concordance for preferences as a concordance rule. Let x^0 be Nash K–equilibrium point in game G. We have to prove that $\varphi(x^0)$ is Nash K–equilibrium point in game Γ.

We fix arbitrary strategy $y_T \in Y_T$. Since f is homomorphism "onto" then according to Lemma 4 we obtain $(\exists x^*_T \in X_T) \varphi_T(x^*_T) = y_T$. For any strategy x_T the condition $F(x_T, x^0_{N\setminus T}) \lesssim F(x^0)$ holds. Hence, for strategy x^*_T the condition $F(x^*_T, x^0_{N\setminus T}) \lesssim F(x^0)$ is satisfied. Since f is homomorphism then

$$\psi \left(F(x^*_T, x^0_{N\setminus T}) \right) \lesssim \psi (F(x^0)).$$

By condition (16): $\Phi \left(\varphi_T(x^*_T), \varphi_{N\setminus T}(x^0_{N\setminus T}) \right) \lesssim \Phi (\varphi(x^0))$.

Since strategy $y_T \in Y_T$ is arbitrary one then $\varphi(x^0)$ is Nash K–equilibrium. □

Theorem 3. For K–equilibrium, any strict surjective homomorphism is contrvariant under Pareto concordance and under modified Pareto concordance also.

Proof (of theorem 3). Consider Pareto concordance for preferences as a concordance rule. Let y^0 be K–equilibrium point. We have to prove that situation x^0 with $\varphi(x^0) = y^0$ is K–equilibrium point.

Suppose $x^0 = (x^0_i)_{i \in N}$ is not K–equilibrium then there exists coalition $T \in K$ and strategy $x^*_T \in X_T$ such that $F(x^*_T, x^0_{N\setminus T}) \lesssim F(x^0)$. Since homomorphism f is strict then according to Lemma 5 we get $\psi \left(F(x^*_T, x^0_{N\setminus T}) \right) \lesssim \psi (F(x^0))$.

According to condition (16) we obtain $\Phi \left(\varphi_T(x^*_T), \varphi_{N\setminus T}(x^0_{N\setminus T}) \right) \lesssim \Phi (\varphi(x^0))$. The last condition means $\Phi \left(\varphi_T(x^*_T), y^0_{N\setminus T} \right) \lesssim \Phi (y^0)$. Thus, strategy $\varphi_T(x^*_T)$ is refutation of situation y^0 by coalition T, which is contradictory with y^0 is K–equilibrium point.

Hence, x^0 is K–equilibrium point. □

Theorem 4. For K–acceptance, any strict surjective homomorphism is contrvariant under Pareto concordance and under modified Pareto concordance also.

Proof (of theorem 4). Consider Pareto concordance for preferences as a concordance rule. Let outcome b with $\psi(a) = b$ be K–acceptable one in game Γ. Assume that
outcome a is not acceptable for all coalitions $T \in \mathcal{K}$, i.e. there exists such strategy $x_T^0 \in X_T$ that for any strategy $x_{N \setminus T} \in X_{N \setminus T}$ the condition

$$F(x_T^0, x_{N \setminus T}) \sigma_T^T a$$

holds.

Let $y_{N \setminus T} = (y_T)_{T \in N \setminus T}$ be arbitrary strategy of complementary coalition $N \setminus T$ in game Γ. Since f is homomorphism "onto" then according to Lemma 4 we have

$$\left(\exists x_N^{N \setminus T} \in X_{N \setminus T} \right) \varphi_{N \setminus T} \left(x_N^{N \setminus T} \right) = y_{N \setminus T}.$$

By (24) the condition $F(x_T^0, x_N^{N \setminus T}) \sigma_T^T a$ holds. According to Lemma 5 we get

$$\psi \left(F(x_T^0, x_N^{N \setminus T}) \right) \sigma_T^T \psi (a).$$

By (16) we have

$$\psi \left(F(x_T^0, x_N^{N \setminus T}) \right) = \Phi \left(\varphi_T \left(x_T^0 \right), \varphi_{N \setminus T} \left(x_N^{N \setminus T} \right) \right).$$

Thus, the condition

$$\Phi \left(\varphi_T \left(x_T^0 \right), y_{N \setminus T} \right) \sigma_T^T \psi (a)$$

is satisfied. Hence, strategy $\varphi_T \left(x_T^0 \right)$ is objection of coalition T against outcome b which is contradictory with b is \mathcal{K}–acceptable outcome.

Hence, outcome a is \mathcal{K}–acceptable. \hfill \Box

Theorem 5. For \mathcal{K}–equilibrium, any regular surjective homomorphism is covariant under modified Pareto concordance.

Proof (of theorem 5). Let x^0 be \mathcal{K}–equilibrium. We have to prove that situation $\varphi \left(x^0 \right)$ is \mathcal{K}–equilibrium.

Suppose $\varphi \left(x^0 \right)$ is not \mathcal{K}–equilibrium, i.e.

$$\left(\exists T \in \mathcal{K} \right) \left(\exists y_T \in Y_T \right) \Phi \left(\varphi \left(x^0 \right) \| y_T \right) \sigma_T^T \Phi \left(\varphi \left(x^0 \right) \right) \quad (25)$$

Since homomorphism f is surjective then according to Lemma 4 we have

$$\left(\exists x_T^* \in X_T \right) \varphi_T \left(x_T^* \right) = y_T.$$

Hence, the condition $\Phi \left(\varphi_T \left(x_T^* \right), \varphi_{N \setminus T} \left(x_N^{N \setminus T} \right) \right) \sigma_T^T \Phi \left(\varphi \left(x^0 \right) \right)$ holds. By (16) we get

$$\Phi \left(\varphi_T \left(x_T^* \right), \varphi_{N \setminus T} \left(x_N^{N \setminus T} \right) \right) = \psi \left(F \left(x_T^*, x_N^{N \setminus T} \right) \right).$$

Thus, $\psi \left(F \left(x^0 \| x_T^* \right) \right) \sigma_T^T \psi \left(F \left(x^0 \right) \right).$ Because homomorphism f is regular then according to Lemma 6 we obtain $F \left(x^0 \| x_T^* \right) \sigma_T^T F \left(x^0 \right)$ i.e. strategy x_T^* is refutation of situation x^0 by coalititon T, which is contradictory with x^0 is \mathcal{K}–equilibrium.

Hence, $\varphi \left(x^0 \right)$ is \mathcal{K}–equilibrium in game Γ. \hfill \Box

Appendix

Consider the example concerning of concordance rules.

Let G be a game of three players with set of outcomes $A = \{a, b, c, d, e\}$. Preference relations for each player are given by Diagrams 2, 3, 4.

Using Diagrams 2 – 4 we can define preference relations in the following form:

$$\rho_1 : a < b, b \sim c, c \sim d, b < e$$

$$\rho_2 : a \sim b, b \sim c, c < d, e < d$$

$$\rho_3 : a < c, b \sim c, c < d, b \sim e, d \sim e.$$

Then according to Pareto concordance (see 2.1) for coaliton $T = \{1, 2\}$ we have

$$\rho_T : a \preceq b, b \preceq c, c \preceq d$$

where strict part consists of two conditions $a \preceq b, c \preceq d$ and symmetric part is $b \preceq c$.

Tatiana F. Savina
Fig. 2. Diagram 2

Fig. 3. Diagram 3
For $T = \{1, 3\}$ a preference relation ρ_T is defined by $b \preceq c, c \preceq d, b \preceq e$ where strict part is $c \rho_T^T d, b \rho_T^T e$ and symmetric part is $b \rho_T^T c$.

For $T = \{2, 3\}$ relation ρ_T is $b \preceq c, c \preceq d, e \preceq d$ where $c \rho_T^T d, e \rho_T^T d, b \rho_T^T c$.

For $T = \{1, 2, 3\}$ relation ρ_T is $b \preceq c, c \preceq d$ where $c \rho_T^T d, b \rho_T^T c$.

According to modified Pareto concordance (see 2.2) for coalition $T = \{1, 2\}$ strict part ρ_T is empty set and symmetric part consists of one condition $b \rho_T^T c$.

For $T = \{2, 3\}$ strict part of preference relation ρ_T is defined by $c \rho_T^T d$ and symmetric part is $b \rho_T^T c$.

Preference relation ρ_T for coalition $T = \{1, 2, 3\}$ in the game with majority rule (see 2.3): $a \preceq b, b \rho_T^T c, c \rho_T^T d, b \rho_T^T e, e \rho_T^T d$.

References

