Homomorphisms and Congruence Relations for Games with Preference Relations

Tatiana F. Savina

Saratov State Technical University, Institut razvitiya biznesa i strategiy (Business and Strategy Development Institute)
Gorkogo st. 9, Saratov, 410088, Russia
E-mail: suri-cat@yandex.ru

Abstract In this paper we consider games with preference relations. The main optimality concept for such games is concept of equilibrium. We introduce a notion of homomorphism for games with preference relations and study a problem concerning connections between equilibrium points of games which are in a homomorphic relation. The main result is finding covariantly and contravariantly complete families of homomorphisms.

Keywords: homomorphism, equilibrium points, Nash equilibrium, game with preference relations.

1. Introduction

In this paper we study games in which a valuation structure by preference relations is given.

We can consider a n-person game with preference relations as a system of the form

\[G = (X_1, \ldots, X_n, A, \rho_1, \ldots, \rho_n, F) \]

where \(X_i \) is a set of strategies of player \(i \) (\(i = 1, \ldots, n \)), \(A \) is a set of outcomes, \(\rho_i \subseteq A^2 \) is a preference relation of player \(i \) (\(i = 1, \ldots, n \)) and realization function \(F \) is a mapping of set of situations \(X = X_1 \times \ldots \times X_n \) in set of outcomes \(A \).

The main optimality concept for games of this class are various modifications of Nash equilibrium. We introduce a concept of equilibrium as a generalization of Nash equilibrium for games of the form (1). We consider equilibrium and Nash equilibrium as optimal solutions for games with preference relations. The basic subject of research in our paper are homomorphisms of certain types. It is important that homomorphisms preserve optimal solutions of some types. The main results of the present work are theorems concerning connections between optimal solutions of games which are in a homomorphic relation.

2. Preliminaries

2.1. Basic concepts for preference structures

A preference structure on a set \(A \) can be given as a pair \((A, \rho) \) where \(\rho \) is arbitrary reflexive binary relation on \(A \).

The condition \((a_1, a_2) \in \rho \) means that element \(a_1 \) is less preference than \(a_2 \). Given a preference relation \(\rho \subseteq A^2 \), we denote \(\rho^s = \rho \cap \rho^{-1} \) its symmetric part and \(\rho^s = \rho \setminus \rho^s \) its strict part.

We write
\[a_1 \not\leq a_2 \text{ instead of } (a_1, a_2) \in \rho, \]
\[a_1 \not\leq a_2 \text{ instead of } (a_1, a_2) \in \rho^3, \]
\[a_1 \not\leq a_2 \text{ instead of } (a_1, a_2) \in \rho^*. \]

Remark 1. Conditions \(a_1 \not\leq a_2 \) and \(a_2 \not\leq a_1 \) are not compatible.

In this paper we consider some important types of preference structures: transitive, antisymmetric, linear, acyclic, ordinal.

Definition 1. A preference structure \((A, \rho) \) is called
- transitive if for any \(a_1, a_2, a_3 \in A \)
 \((a_1, a_2) \in \rho \land (a_2, a_3) \in \rho \Rightarrow (a_1, a_3) \in \rho; \)
- antisymmetric if for any \(a_1, a_2 \in A \)
 \((a_1, a_2) \in \rho \land (a_2, a_1) \in \rho \Rightarrow a_1 = a_2; \)
- linear if for any \(a_1, a_2 \in A \)
 \((a_1, a_2) \in \rho \lor (a_2, a_1) \in \rho; \)
- acyclic if for any \(n = 2, 3, \ldots \) and \(a_1, \ldots, a_n \in A \)
 \((a_1, a_2) \in \rho \land \ldots \land (a_{n-1}, a_n) \in \rho \land (a_n, a_1) \in \rho \Rightarrow a_1 = a_2 = \ldots = a_n; \)
- ordinal if axioms of transitivity and antisymmetry hold.

Remark 2. An ordinal preference structure \((A, \rho) \) is a transitive and acyclic one and the converse is true.

Thus, transitive preference structure and acyclic one are a natural generalization of ordinal preference structure.

Definition 2. Let \((A, \rho) \) be a preference structure and \(\varepsilon \) be an equivalence relation on \(A \). Relation \(\rho \) is said to be acyclic under \(\varepsilon \) if for any \(n = 2, 3, \ldots \) the implication

\[a_0 \not\leq a_1 \not\leq a_2 \not\leq \ldots \not\leq a_n \not\leq a_0 \Rightarrow a_0 \equiv a_1 \equiv \ldots \equiv a_n \]

holds.

2.2. Homomorphisms of preference structures
Let \((A, \rho) \) and \((B, \sigma) \) be two preference structures.

Definition 3. A mapping \(\psi : A \to B \) is called a homomorphism of the first structure into the second one if for any \(a_1, a_2 \in A \) the condition

\[a_1 \not\leq a_2 \Rightarrow \psi(a_1) \not\leq \psi(a_2) \quad (2) \]

holds.
Homomorphisms and Congruence Relations for Games with Preference Relations

A homomorphism $$\psi: A \rightarrow B$$ is said to be a homomorphism "onto" if $$\psi$$ is a mapping of $$A$$ onto $$B$$.

A homomorphism $$\psi$$ is said to be strict if the following two conditions are satisfied:

$$a_1 \preceq a_2 \Rightarrow \psi(a_1) \preceq \psi(a_2),$$ \hspace{1cm} (3)

$$a_1 \preceq a_2 \Rightarrow \psi(a_1) \preceq \psi(a_2).$$ \hspace{1cm} (4)

A homomorphism $$\psi$$ is called regular if the following two conditions

$$\psi(a_1) \preceq \psi(a_2) \Rightarrow a_1 \preceq a_2,$$ \hspace{1cm} (5)

$$\psi(a_1) \preceq \psi(a_2) \Rightarrow \psi(a_1) = \psi(a_2).$$ \hspace{1cm} (6)

hold.

Remark 3. For any homomorphism the condition (4) holds. Indeed, let $$\psi$$ be a homomorphism from $$A$$ into $$B$$ and $$a_1 \preceq a_2$$ holds. The condition $$a_1 \preceq a_2$$ means that $$a_1 \preceq a_2$$ and $$a_2 \preceq a_1$$. Hence, $$\psi(a_1) \preceq \psi(a_2)$$ and $$\psi(a_2) \preceq \psi(a_1)$$ hold, i.e. $$\psi(a_1) \preceq \psi(a_2).$$

Remark 4. Any strict homomorphism is a homomorphism but the converse is false.

Let $$(A, \rho)$$ be a preference structure and $$\varepsilon \subseteq A^2$$ an equivalence relation.

Definition 4. A factor-structure for preference structure $$(A, \rho)$$ is a pair $$(A/\varepsilon, \rho/\varepsilon)$$ where we denote for any $$C_1, C_2 \in A/\varepsilon$$:

$$(C_1, C_2) \in \rho/\varepsilon \iff (\exists a_1 \in C_1, a_2 \in C_2) (a_1, a_2) \in \rho.$$

Lemma 1 (about homomorphisms of preference structures).

Let $$(A, \rho)$$ be a preference structure, $$\varepsilon$$ be an equivalence relation on $$A$$. Then

1. a canonical mapping $$\psi: a \rightarrow [a]_\varepsilon$$ is a homomorphism from preference structure $$(A, \rho)$$ onto factor-structure $$(A/\varepsilon, \rho/\varepsilon)$$;

2. a canonical mapping $$\psi$$ is a strict homomorphism if and only if condition

$$\begin{align*}
\quad a_1 \preceq a_2 \\
\quad a_1' \equiv a_1 \\
\quad a_2' \equiv a_2 \\
\quad a_2' \preceq a_1'
\end{align*} \Rightarrow a_1 \preceq a_2$$ \hspace{1cm} (7)

is satisfied;
3. A canonical mapping \(\psi \) is a regular homomorphism if and only if conditions

\[
\begin{align*}
& a_1 \not\equiv a_2 \\
& a_1 \not\prec a_2 \\
& a_1' \equiv a_1 \\
& a_2' \equiv a_2 \\
& a_1 \not\prec a_2 \\
& a_1' \equiv a_1 \\
& a_2' \equiv a_2 \\
& a_2' \not\prec a_1'
\end{align*}
\]

\(\Rightarrow a_1' \not\prec a_2' \),

(8)

\[
\begin{align*}
& a_1 \not\equiv a_2 \\
& a_1' \equiv a_1 \\
& a_2' \equiv a_2 \\
& a_2' \not\prec a_1'
\end{align*}
\]

\(\Rightarrow a_1 \equiv a_2 \).

(9)

hold.

Proof (of lemma).

1. Suppose \(a_1 \not\preceq a_2 \). Then according to definition of factor relation we have

\([a_1]_\varepsilon \not\preceq [a_2]_\varepsilon \). Hence, \(\psi \) is a homomorphism. Since a canonical homomorphism is a homomorphism "onto", we obtain the proof of the part (1) of the Lemma.

2. Let a canonical homomorphism \(\psi \) be strict and the implication condition (17) is satisfied. Suppose \(a_1 \not\prec a_2 \). Since a canonical homomorphism is strict by condition of the Lemma then \([a_1]_\varepsilon \not\prec [a_2]_\varepsilon \). On the other hand from the condition \(a_2' \not\preceq a_1' \) it follows that \([a_2']_\varepsilon \not\preceq [a_1']_\varepsilon \). As \([a_1]_\varepsilon = [a_1']_\varepsilon, [a_2]_\varepsilon = [a_2']_\varepsilon \) then

\[
\begin{align*}
& [a_1]_\varepsilon \not\preceq [a_2]_\varepsilon, \\
& [a_2]_\varepsilon \not\preceq [a_1]_\varepsilon.
\end{align*}
\]

The last system of conditions cannot be true (because of remark 1). Hence, our assumption is not true and since \(a_1 \not\preceq a_2 \) we get \(a_1 \not\preceq a_2 \).

Conversely, suppose that the condition (17) holds. We have to prove that a canonical homomorphism is strict. Indeed, take two elements \(a_1, a_2 \) for which \(a_1 \not\prec a_2 \) takes place, hence \(a_1 \not\preceq a_2 \). By the part (1) of this Lemma \([a_1]_\varepsilon \not\preceq [a_2]_\varepsilon \) holds. We assume that \([a_2]_\varepsilon \not\preceq [a_1]_\varepsilon \). Then there exist elements \(a_1', a_2' \) such that \(a_1' \equiv a_1, a_2' \equiv a_2 \), condition \(a_2' \not\preceq a_1' \) holds. In this case, all assumptions of condition (17) are satisfied and by (17) we have \(a_1 \not\preceq a_2 \), which is contradictory to \(a_1 \not\prec a_2 \). Thus, \([a_2]_\varepsilon \not\preceq [a_1]_\varepsilon \) does not take place and we get \([a_1]_\varepsilon \not\prec [a_2]_\varepsilon \). So, the first condition of homomorphism (3) for canonical homomorphism is satisfied. By remark 3 \(\psi \) is a strict homomorphism.
3. Suffice to verify that for regular homomorphism ψ its kernel ε_ψ satisfies (8) and (9). Suppose

$$\begin{cases}
 a_1 \not\equiv a_2, \\
 a_1 \not\leq a_2, \\
 a'_1 \equiv a_1, \\
 a'_2 \equiv a_2.
\end{cases}$$

From $a_1 \not\leq a_2$ it follows that $a_1 \not\leq a_2$ then $\psi(a_1) \not\leq \psi(a_2)$. Assume that $\psi(a_1) \not\leq \psi(a_2)$; by using (11) we get $\psi(a_2) = \psi(a_2)$, i.e. $a_1 \equiv a_2$ is in contradiction with our assumptions. Hence, $\psi(a_1) \not\leq \psi(a_2)$ holds, i.e. $\psi(a_1) \not\leq \psi(a_2)$.

By (10) we obtain $a'_1 \not\leq a'_2$ which was to be proved.

Now suppose conditions of (9) hold. Since ψ is a homomorphism we have

$$\begin{cases}
 \psi(a_1) \not\leq \psi(a_2), \\
 \psi(a_2) \not\leq \psi(a_1).
\end{cases}$$

Hence, $\psi(a_1) \not\leq \psi(a_2)$. By (11) we get $\psi(a_1) = \psi(a_2)$, i.e. $a_1 \equiv a_2$.

Conversely, assume $[a_1]_\varepsilon \not\leq [a_2]_\varepsilon$. Then $[a_1]_\varepsilon \not\leq [a_2]_\varepsilon$ that there exist such elements a'_1, a'_2 that $a'_1 \equiv a_1, a'_2 \equiv a_2$ and $a'_1 \not\leq a'_2$. The condition $a'_2 \not\leq a'_1$ does not hold otherwise $[a'_2]_\varepsilon \not\leq [a'_1]_\varepsilon$, i.e. $[a_2]_\varepsilon \not\leq [a_1]_\varepsilon$, it is contradiction (see remark 1). Hence $a'_1 \not\leq a'_2$. The condition $a'_1 \equiv a'_2$ does not hold, hence the conditions

$$\begin{cases}
 a_1 \not\equiv a_2, \\
 a'_1 \not\leq a'_2, \\
 a_1 \equiv a'_1, \\
 a_2 \equiv a'_2.
\end{cases}$$

hold. According to (8) we obtain $a_1 \not\leq a_2$.

Now verify (11). Suppose $[a_1]_\varepsilon \not\leq [a_2]_\varepsilon$, i.e. there exist elements $a'_1, a'_2 \equiv a_1$ and $a'_2, a'_2 \equiv a_2$ such that

$$\begin{cases}
 a'_1 \not\leq a'_2, \\
 a'_2 \not\leq a'_1.
\end{cases}$$

Then according to (9) we get $a'_1 \equiv a'_2$, i.e. $[a_1]_\varepsilon = [a_2]_\varepsilon$, which was to be proved.

\[\square\]

Lemma 2. Let $\langle A, \rho \rangle$ be a preference structure, ε be an equivalence relation on A. Factor-structure of preferences $\langle A/\varepsilon, \rho/\varepsilon \rangle$ is transitive if and only if the inclusion

$$\rho \circ \varepsilon \circ \rho \subseteq \varepsilon \circ \rho \circ \varepsilon \quad (10)$$

holds.
Proof (of lemma).
Suppose \((a_1, a_3) \in \rho \circ \varepsilon \circ \rho\). According to the definition of composition of binary relations, then there exist such elements \(a_2, a'_2 \in A\) that \((a_1, a_2) \in \rho\), \((a_2, a'_2) \in \varepsilon\), \((a'_2, a_3) \in \rho\) hold. Denote by \(C_1 = [a_1]_\varepsilon\), \(C_2 = [a_2]_\varepsilon = [a'_2]_\varepsilon\), \(C_3 = [a_3]_\varepsilon\). According to the definition of factor-relation we have \((C_1, C_2) \in \rho / \varepsilon\), \((C_2, C_3) \in \rho / \varepsilon\); since the factor-relation is supposed to be transitive then \((C_1, C_3) \in \rho / \varepsilon\). It means that for some \(a'_1 \in C_1\), \(a'_3 \in C_3\), \((a'_1, a'_3) \in \rho\) is satisfied. As \(a'_1 \equiv a_1, a'_3 \equiv a_3\) we get \((a_1, a_3) \in \varepsilon \circ \rho \circ \varepsilon\) which was to be proved.

Conversely, let the inclusion (10) be held. Let us take three classes \(C_1, C_2, C_3 \in A / \varepsilon\) for which \((C_1, C_2) \in \rho / \varepsilon\), \((C_2, C_3) \in \rho / \varepsilon\). Then there exist the elements \(a_1 \in C_1, a_2 \in C_2, a'_2 \in C_2, a_3 \in C_3\) such that \((a_1, a_2) \in \rho\), \((a'_2, a_3) \in \rho\). Since \(a'_2 \equiv a_2\) we get \((a_1, a_3) \in \rho \circ \varepsilon \circ \rho\). Hence, according to (10), \((a_1, a_3) \in \varepsilon \circ \rho \circ \varepsilon\) It means that there exist the elements \(\overline{a}_1, \overline{a}_3 \in A\) such that \((a_1, \overline{a}_1) \in \varepsilon, (\overline{a}_1, \overline{a}_3) \in \rho, (\overline{a}_3, a_3) \in \varepsilon\). Then \([(\overline{a}_1]_\varepsilon, [\overline{a}_3]_\varepsilon) \in \rho / \varepsilon\) and as \([\overline{a}_3]_\varepsilon = [a_3]_\varepsilon \equiv C_3, [\overline{a}_1]_\varepsilon = [a_1]_\varepsilon \equiv C_1\) we get \((C_1, C_3) \in \rho / \varepsilon\) which was to be proved.

Corollary 1. Let \((A, \rho)\) be a transitive preference structure, \(\varepsilon\) be an equivalence relation on \(A\). If at least one of the conditions \(\rho \circ \varepsilon \subseteq \varepsilon \circ \rho\) or \(\varepsilon \circ \rho \subseteq \rho \circ \varepsilon\) holds then factor-structure \((A / \varepsilon, \rho / \varepsilon)\) is transitive.

Proof (of corollary).
1. Indeed, let for example the first inclusion \(\rho \circ \varepsilon \subseteq \varepsilon \circ \rho\) be satisfied. Then \(\rho \circ \varepsilon \circ \rho \subseteq (\rho \circ \varepsilon) \circ \rho \subseteq (\varepsilon \circ \rho) \circ \rho = \varepsilon \circ \rho^2 \subseteq \varepsilon \circ \rho \subseteq \varepsilon \circ \rho \circ \varepsilon\). According to Lemma 2 factor-structure \((A / \varepsilon, \rho / \varepsilon)\) is transitive.

2. Now let \(\varepsilon \subseteq \rho\) be satisfied. Multiplying the inclusion \(\varepsilon \subseteq \rho\) by \(\rho\) to the left we have \(\rho \circ \varepsilon \subseteq \rho \circ \rho = \rho^2 \subseteq \rho \subseteq \varepsilon \circ \rho\). Multiplying initial inclusion \(\varepsilon \subseteq \rho\) by \(\rho\) to the right we obtain \(\varepsilon \circ \rho \subseteq \rho \circ \rho = \rho^2 \subseteq \rho \circ \varepsilon\). From the inclusions proved we have \(\rho \circ \varepsilon = \varepsilon \circ \rho\), i.e. relations \(\rho\) and \(\varepsilon\) commute. From part (1) of the proof of this corollary it follows that \((A / \varepsilon, \rho / \varepsilon)\) is transitive.

Lemma 3. Let \((A, \rho)\) be a preference structure, \(\varepsilon\) be an equivalence relation on \(A\). Factor-structure \((A / \varepsilon, \rho / \varepsilon)\) is acyclic if and only if \(\rho \cup \varepsilon\) is acyclic under \(\varepsilon\).

Proof (of lemma).

Remark 5. It is easy to verify that conditions
\[
a_0 \rho \varepsilon a'_1 \rho \varepsilon a_1 \rho \varepsilon \ldots \rho \varepsilon a_n \rho \varepsilon a'_0 \rho \varepsilon a_0 \Rightarrow a_0 \equiv a_1 \equiv \ldots \equiv a_n \tag{11}
\]
and
\[
a_0 \rho a'_1 \equiv a_1 \rho a'_2 \equiv a_2 \rho \ldots \equiv a_n \rho a'_0 \equiv a_0 \Rightarrow a_0 \equiv a_1 \equiv \ldots \equiv a_n \tag{12}
\]
are equivalent.

Let the condition of the implication (12) be held. Put \(C_0 = [a_0]_\varepsilon = [a'_0]_\varepsilon, C_1 = [a_1]_\varepsilon = [a'_1]_\varepsilon, \ldots, C_n = [a_n]_\varepsilon = [a'_n]_\varepsilon\). According to the definition of factor-relation we have \((C_0, C_1) \in \rho / \varepsilon\), \((C_1, C_2) \in \rho / \varepsilon\), \ldots, \((C_n, C_0) \in \rho / \varepsilon\). Since factor-relation is supposed to be acyclic then \(C_0 = C_1 = \ldots = C_n\). It means that \(a_0 \equiv a_1 \equiv \ldots \equiv a_n\).
Conversely, let (12) be satisfied. Let us take classes $C_0, C_1, \ldots, C_n \in A/\varepsilon$, for which $(C_0, C_1) \in \rho/\varepsilon$, $(C_1, C_2) \in \rho/\varepsilon, \ldots, (C_n, C_0) \in \rho/\varepsilon$. Then there exist elements $a_0 \in C_0, a'_1 \in C_1, a_1 \in C_1, a'_2 \in C_2, \ldots, a_n \in C_n, a'_0 \in C_0$ such that $(a_0, a'_1) \in \rho, (a_1, a'_2) \in \rho, \ldots, (a_n, a'_0) \in \rho$; since $a'_i \equiv a_i$ $(i = 0, 1, \ldots, n)$ we get $a_0 \equiv a_1 \equiv \ldots \equiv a_n$. It means that $[a_0]_\varepsilon = [a_1]_\varepsilon = \ldots = [a_n]_\varepsilon$. As $C_0 = [a_0]_\varepsilon, C_1 = [a_1]_\varepsilon, \ldots, C_n = [a_n]_\varepsilon$ we obtain $C_0 = C_1 = \ldots = C_n$. This completes the proof of Lemma 3.

3. Games with preference relations

3.1. Homomorphisms of games with preference relations

Consider two games with preference relations for players $\{1, \ldots, n\}$:

$$G = (X_1, \ldots, X_n, A, \rho_1, \ldots, \rho_n, F) \text{ and } \Gamma = (U_1, \ldots, U_n, B, \sigma_1, \ldots, \sigma_n, \Phi).$$

Definition 5. A $(n + 1)$ system of mappings $f = (\varphi_1, \ldots, \varphi_n, \psi)$ where for any $i = 1, \ldots, n, \varphi_i : X_i \rightarrow U_i$, and $\psi : A \rightarrow B$ is called a homomorphism from game G into game Γ if the following two conditions are satisfied:

$$f \circ F = \Phi \circ (\varphi_1 \square \ldots \square \varphi_n).$$

Remark 6. For any situation $x = (x_1, \ldots, x_n)$ of game G condition (14) means that $\psi(F(x_1, \ldots, x_n)) = \Phi(\varphi_1(x_1), \varphi_2(x_2), \ldots, \varphi_n(x_n))$.

A homomorphism f is said to be **strict homomorphism** if system of the conditions

$$a_1 \prec_i a_2 \Rightarrow \psi(a_1) \prec_i \psi(a_2), \quad (i = 1, \ldots, n)$$

holds instead of condition (13).

A homomorphism f is said to be **regular homomorphism** if for any $i = 1, \ldots, n$, mapping ψ is a regular homomorphism between the preference structures (A, ρ_i) and (B, σ_i), that is the following two conditions

$$\psi(a_1) \prec_i \psi(a_2) \Rightarrow a_1 \prec_i a_2,$$

$$\psi(a_1) \succ_i \psi(a_2) \Rightarrow a_1 \succ_i a_2.$$

hold.

A homomorphism f is said to be homomorphism **"onto"**, if each φ_i $(i = 1, \ldots, n)$ is a mapping "onto"; an **isomorphic inclusion map**, if each φ_i $(i = 1, \ldots, n)$ is one-to-one function; an **isomorphism**, if for any $i = 1, \ldots, n$, φ_i is one-to-one function and mapping ψ is an isomorphism between (A, ρ_i) and (B, σ_i), that is the following equivalence

$$a_1 \prec_i a_2 \Leftrightarrow \psi(a_1) \prec_i \psi(a_2)$$

holds.
Definition 6. A \((n + 1)\) system of equivalence relations \(\equiv = (\varepsilon_1, \ldots, \varepsilon_n, \varepsilon)\) where \(\varepsilon_i \subseteq X_i^2\) \((i = 1, \ldots, n)\), \(\varepsilon \subseteq A^2\) is called congruence in game \(G\) if consistency condition for realization function holds, i.e.

\[
x'_1 \equiv x_1, \quad x'_2 \equiv x_2, \quad \ldots, \quad x'_n \equiv x_n
\]

\[
\Rightarrow F(x'_1, \ldots, x'_n) \equiv F(x_1, \ldots, x_n).
\]

(20)

Congruence \(\equiv\) in game \(G\) is said to be str-congruence if consistency condition for preference relations for any \(i = 1, \ldots, n\)

\[
a_1 \prec_i a_2 \\
a'_1 \equiv a_1 \\
a'_2 \equiv a_2 \\
a_2 \prec_i a'_1
\]

\[
\Rightarrow a_1 \not\equiv a_2
\]

(21)

holds.

Congruence \(\equiv\) in game \(G\) is said to be reg-congruence if the following two conditions for any \(i = 1, \ldots, n\)

\[
a_1 \not\equiv a_2 \\
a_1 \prec_i a_2 \\
a'_1 \equiv a_1 \\
a'_2 \equiv a_2
\]

\[
\Rightarrow a'_1 \prec_i a'_2,
\]

(22)

\[
a_1 \not\equiv a_2 \\
a'_1 \equiv a_1 \\
a'_2 \equiv a_2 \\
a_2 \prec_i a'_1
\]

\[
\Rightarrow a_1 \equiv a_2.
\]

(23)

hold.

Definition 7. Let \(f = (\varphi_1, \ldots, \varphi_n, \psi)\) be a homomorphism from game \(G\) into game \(\Gamma\). A \((n + 1)\) system of equivalence relations \(\equiv_f = (\varepsilon_{\varphi_1}, \ldots, \varepsilon_{\varphi_n}, \varepsilon_\psi)\) where for any \(i = 1, \ldots, n\), \(\varepsilon_{\varphi_i}\) is kernel of \(\varphi_i\) and \(\varepsilon_\psi\) is kernel of \(\psi\), is called kernel of homomorphism \(f\).

Theorem 1. Let \(G\) be a game with preference relations of the form \((1)\) and \(\equiv\) be a congruence in game \(G\). Then we can define a factor-game \(G/\equiv\) with preference relations by

\[
G/\equiv = (X_1/\varepsilon_1, \ldots, X_n/\varepsilon_n, A/\varepsilon, \rho_1/\varepsilon, \ldots, \rho_n/\varepsilon, F_\varepsilon)
\]

where realization function \(F_\varepsilon([x_1]_{\varepsilon_1}, \ldots, [x_n]_{\varepsilon_n}) \overset{df}{=} [F(x_1, \ldots, x_n)]_{\varepsilon}\).

1. Canonical homomorphism \(f_\equiv = (\varphi_{\varepsilon_1}, \ldots, \varphi_{\varepsilon_n}, \psi_\varepsilon)\) where for any \(i = 1, \ldots, n\), \(\varphi_{\varepsilon_i}: X_i \rightarrow X_i/\varepsilon_i\) and \(\psi_\varepsilon: A \rightarrow A/\varepsilon\) is a homomorphism from game \(G\) onto game \(G/\equiv\).
Homomorphisms and Congruence Relations for Games with Preference Relations 395

2. Canonical homomorphism \(f_\varnothing \) is strict if and only if congruence \(\varnothing \) is str-congruence.

3. Canonical homomorphism \(f_\varnothing \) is regular if and only if congruence \(\varnothing \) is reg-congruence.

The proof of this Theorem is based on Lemma 1.

Theorem 2. Let \(G \) and \(\Gamma \) be two games with preference relations and a \((n+1)\) system of mappings \(f = (\varphi_1, \ldots, \varphi_n, \psi) \) be a homomorphism of game \(G \) onto game \(\Gamma \). Then

1. For a \((n+1)\)-tuple of equivalence relations \(\varnothing \varnothing = (\varnothing \varnothing_1, \ldots, \varnothing \varnothing_n, \varnothing \psi) \), where \(\varnothing \varnothing \) is kernel of homomorphism \(f \), consistency condition (20) holds. Hence, we can construct factor-game \(G/\varnothing \varnothing \).
2. There exists a \((n+1)\) system of mappings \(\overline{\theta} = (\theta_1, \ldots, \theta_n, \theta) \) from game \(G/\varnothing \varnothing \) into game \(\Gamma \) which is an isomorphic inclusion map from \(G/\varnothing \varnothing \) into \(\Gamma \).

Proof (of theorem).

1. Let the condition of the implication (20) be held. Since \(\varnothing \varnothing \) is kernel of homomorphism \(f \) then for any \(i = 1, \ldots, n \)

\[
x_1' \equiv_{\varnothing \varnothing} x_1' \iff \varphi_i(x_1') = \varphi_i(x_1),
\]

\[
a' \equiv_{\varnothing \varnothing} a \iff \psi(a') = \psi(a)
\]

hold.

Let us prove that the equality \(\psi(F(x_1', \ldots, x_n')) = \psi(F(x_1, \ldots, x_n)) \) is true. Since \(f \) is homomorphism, then \(\psi(F(x_1', \ldots, x_n')) = \Phi(\varphi_1(x_1'), \ldots, \varphi_n(x_n')) \) and \(\psi(F(x_1, \ldots, x_n)) = \Phi(\varphi_1(x_1), \ldots, \varphi_n(x_n)) \).

Thus, the equality \(\Phi(\varphi_1(x_1'), \ldots, \varphi_n(x_n')) = \Phi(\varphi_1(x_1), \ldots, \varphi_n(x_n)) \) is obvious.

By using Theorem 1 we can construct factor-game \(G/\varnothing \varnothing \) and canonical homomorphism is a homomorphism from game \(G \) onto game \(G/\varnothing \varnothing \).

2. We define isomorphic inclusion map \(\overline{\theta} = (\theta_1, \ldots, \theta_n, \theta) \) from game \(G/\varnothing \varnothing \) into game \(\Gamma \) by \(\theta_i([x_1]_{\varnothing \varnothing_1}) = \varphi_i(x_1) \) for any \(i = 1, \ldots, n \) and \(\theta([a]_{\varnothing \psi}) = \psi(a) \).

First, we prove that all mappings \(\theta_1, \ldots, \theta_n, \theta \) are one-to-one functions. For example, we verify that \(\theta_1 \) is one-to-one function. We write

\[
\theta_1([x_1]_{\varnothing \varnothing_1}) = \theta([x_1]_{\varnothing \psi}) \iff \varphi_1(x_1) = \varphi_1(x_1) \iff x_1' \equiv_{\varnothing \varnothing} x_1 \iff [x_1']_{\varnothing \varnothing_1} = [x_1]_{\varnothing \psi}.
\]

Now we prove that \(\overline{\theta} = (\theta_1, \ldots, \theta_n, \theta) \) is a homomorphism from game \(G/\varnothing \varnothing \) into game \(\Gamma \). Suppose \(([a_1]_{\varnothing \psi}, [a_2]_{\varnothing \psi}) \in \rho_1/\varnothing \psi \) then there exist \(a_1' \equiv_{\varnothing \psi} a_1, a_2' \equiv_{\varnothing \psi} a_2 \) (i.e. \(\psi(a_1') = \psi(a_1), \psi(a_2') = \psi(a_2) \)) such that \((a_1', a_2') \in \rho_1 \). Since \(f \) is a homomorphism, it follows that \(\psi(a_1'), \psi(a_2') \in \sigma_1 \), that is \(\psi(a_1), \psi(a_2) \in \sigma_1 \). By definition \(\theta \), we get \(\theta_1([a_1]_{\varnothing \psi}), \theta_2([a_2]_{\varnothing \psi}) \in \sigma_1 \). Hence, condition of homomorphism (13) for \(\overline{\theta} \) holds.

Now we verify condition (14). We write

\[
\theta(F([x_1]_{\varnothing \psi}, \ldots, [x_n]_{\varnothing \psi})) = \theta([F(x_1, \ldots, x_n)]_{\varnothing \psi}) = \psi(F(x_1, \ldots, x_n)).
\]

Since \(f \) is a homomorphism then

\[
\psi(F(x_1, \ldots, x_n)) = \Phi(\varphi_1(x_1), \ldots, \varphi_n(x_n)) = \Phi(\theta_1([x_1]_{\varnothing \psi}), \ldots, \theta_n([x_n]_{\varnothing \psi})).
\]
Thus, \(\bar{\theta} = (\theta_1, \ldots, \theta_n, \theta) \) is an isomorphic inclusion map from factor-game \(G/\bar{\varepsilon}_f \) into game \(\Gamma \). This completes the proof of Theorem 2.

\[\square \]

Theorem 3. Let \(G \) be a game with preference relations of the form (1) and \(\bar{\varepsilon} \) be a congruence in game \(G \). A factor-game \(G/\bar{\varepsilon} \) is a game with transitive preference structure if and only if for any \(i = 1, \ldots, n \) the condition

\[\rho_i \circ \varepsilon \circ \rho_i \subseteq \varepsilon \circ \rho_i \circ \varepsilon \]

holds.

The proof of this Theorem is based on Lemma 2.

Theorem 4. Let \(G \) be a game with transitive preference structure, \(\bar{\varepsilon} \) be a congruence in game \(G \). If for any \(i = 1, \ldots, n \) at least one of the conditions \(\rho_i \circ \varepsilon \subseteq \varepsilon \circ \rho_i \) or \(\varepsilon \circ \rho_i \subseteq \rho_i \circ \varepsilon \) or \(\varepsilon \subseteq \rho_i \) holds then a factor-game \(G/\bar{\varepsilon} \) is a game with transitive preference structure.

The proof of this Theorem is based on Corollary 1 of Lemma 2.

Theorem 5. Let \(G \) be a game with preference relations of the form (1) and \(\bar{\varepsilon} \) be a congruence in game \(G \). A factor-game \(G/\bar{\varepsilon} \) is a game with acyclic preference structure if and only if for any \(i = 1, \ldots, n \), \(\rho_i \cup \varepsilon \) is acyclic under \(\varepsilon \), i.e. the implication

\[a_0 \not\leq a_1 \not\leq \ldots \not\leq a_n \not\leq a_0 \Rightarrow a_0 \equiv a_1 \equiv \ldots \equiv a_n \]

holds.

The proof of this Theorem is based on Lemma 3.

It is easy to see that the following results are true.

Theorem 6. A \((n+1)\)-tuple of equivalence relations \(\bar{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n, \varepsilon) \) in game \(G \) is kernel of some homomorphism from game \(G \) into a game with preference relations if and only if \(\bar{\varepsilon} \) is a congruence in game \(G \).

Theorem 7. A \((n+1)\)-tuple of equivalence relations \(\bar{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n, \varepsilon) \) in game \(G \) is kernel of some strict homomorphism from game \(G \) into a game with preference relations if and only if \(\bar{\varepsilon} \) is a str-congruence in game \(G \).

Theorem 8. A \((n+1)\)-tuple of equivalence relations \(\bar{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n, \varepsilon) \) in game \(G \) is kernel of some regular homomorphism from game \(G \) into a game with preference relations if and only if \(\bar{\varepsilon} \) is a reg-congruence in game \(G \).

3.2. Equilibrium points in games with preference relations

Let \(G \) be a game with preference relations of the form (1). Any situation \(x \in X \) can be given in the form \(x = (x_i)_{i=1, \ldots, n} \), where \(x_i \) is the \(i \)-th component of \(x \). For \(x'_i \in X_i \), we denote by \(x \parallel x'_i \) a situation whose \(i \)-th component is \(x'_i \) and other components are the same as in \(x \).
Homomorphisms and Congruence Relations for Games with Preference Relations 397

Definition 8. A situation \(x \in X \) is called an equilibrium point in game \(G \) if such \(i = 1, \ldots, n \) and \(x'_i \in X_i \) for which the condition

\[
F(x) \stackrel{\rho_i}{\prec} F(x \parallel x'_i)
\]

holds do not exist.

Nash equilibrium point is an equilibrium point \(x \) for which the outcomes \(F(x) \) and \(F(x \parallel x'_i) \) are comparable under preference relation \(\rho_i \) for any \(i = 1, \ldots, n \). In this case it satisfies

\[
F(x \parallel x'_i) \stackrel{\rho_i}{\preceq} F(x).
\]

Let \(K \) and \(\mathcal{K} \) be two arbitrary classes of games with preference relations. Fix in these classes certain optimality concepts and let \(\text{Opt } G \) be the set of optimal solutions of any game \(G \in K \), \(\text{Opt } \Gamma \) the set of optimal solutions of any game \(\Gamma \in \mathcal{K} \). If \(f \) is a homomorphism from \(G \) into \(\Gamma \), then a correspondence between outcomes (and also between strategies and between situations) of these games is given; we denote this correspondence also by \(f \).

Definition 9. A homomorphism \(f \) is said to be covariant, if \(f \)-image of any optimal solution in \(G \) is an optimal solution in \(\Gamma \) that is \(f(\text{Opt } G) \subseteq \text{Opt } \Gamma \).

A homomorphism \(f \) is said to be contravariant, if \(f \)-preimage of any optimal solution in \(\Gamma \) is an optimal solution in \(G \) that is \(f^{-1}(\text{Opt } \Gamma) \subseteq \text{Opt } G \).

Now suppose that for each \(j \in J \) a homomorphism \(f_j \) of game \(G \in K \) into some game \(\Gamma_j \in \mathcal{K} \) is given.

Definition 10. A family of homomorphisms \((f_j)_{j \in J} \) is said to be covariantly complete if for each \(x \in \text{Opt } G \) there exists such index \(j \in J \) that \(f_j(x) \in \text{Opt } \Gamma_j \).

A family of homomorphisms \((f_j)_{j \in J} \) is said to be contravariantly complete if the condition \(f_j(x) \in \text{Opt } \Gamma_j \) for all \(j \in J \) implies \(x \in \text{Opt } G \).

Lemma 4. 1. A family of homomorphisms \((f_j)_{j \in J} \) is a covariantly complete family of contravariant homomorphisms if and only if

\[
\text{Opt } G = \bigcup_{j \in J} f_j^{-1}(\text{Opt } \Gamma_j).
\]

2. A family of homomorphisms \((f_j)_{j \in J} \) is a contravariantly complete family of covariant homomorphisms if and only if

\[
\text{Opt } G = \bigcap_{j \in J} f_j^{-1}(\text{Opt } \Gamma_j).
\]

Proof (of lemma).

We prove, for example, assertion 1. Since for each \(j \in J \), \(f_j \) is a contravariant homomorphism then by definition we get \(f_j^{-1}(\text{Opt } \Gamma_j) \subseteq \text{Opt } G \). Hence, for arbitrary family of contravariant homomorphisms

\[
\bigcup_{j \in J} f_j^{-1}(\text{Opt } \Gamma_j) \subseteq \text{Opt } G
\]
is satisfied. Since \((f_j)_{j \in J}\) is covariantly complete family of homomorphisms then there exists such index \(j \in J\) that \(f_j(\text{Opt } G) \subseteq \text{Opt } \Gamma_j\), i.e. \(\text{Opt } G \subseteq f_j^{-1}(\text{Opt } \Gamma_j)\). Hence

\[
\text{Opt } G \subseteq \bigcup_{j \in J} f_j^{-1}(\text{Opt } \Gamma_j).
\]

Thus,

\[
\text{Opt } G = \bigcup_{j \in J} f_j^{-1}(\text{Opt } \Gamma_j).
\]

It is easy to verify that the converse is true. This completes the proof of Lemma 4.

\(\square\)

Now consider the case when an optimality concept is the concept of equilibrium. It is easy to verify that the following result is true.

Theorem 9. 1. For equilibrium any strict homomorphism is a contravariant homomorphism.
2. For equilibrium any regular homomorphism is a covariant homomorphism.
3. For Nash equilibrium any homomorphism "onto" is a covariant homomorphism.

References

