scribed. Problems in promotion of technologies of recovery of coal methane in Russia are described. Under the developed concept the gradual legislative interdiction on development of coal seams with a content of methane more than 9 normal cubic meter on ton without its preliminary removal is offered.

Keywords: coal mine methane, resources, recovery and use of methane, the concept of progress of the coal industry.

Сластунов Сергей Викторович, профессор, заведующий кафедрой "Инженерная защита окружающей среды".
 Тел. (499) 230-27-49. E-mail: svs@msmu.ru
Каркашадзе Гюрий Григорович, профессор кафедры "Физика горных пород и процессов".
 Тел. (499) 230-27-49. E-mail: karkash@msmu.ru
Коликов Константин Сергеевич, профессор кафедры "Инженерная защита окружающей среды".
 Тел. (499) 230-27-49. E-mail: kolikovks@mail.ru

Твердосмазочные покрытия для улучшения экологии вакуумной технологической среды в электронном производстве

В. А. ВАСИН, канд. техн. наук; Е. Н. ИВАШОВ, д-р техн. наук;
С. В. СТЕПАНЧИКОВ, канд. техн. наук
Московский государственный институт электроники и математики (технический университет), Москва, Россия

Предложены твердосмазочные покрытия, предназначенные для улучшения экологических параметров вакуумного оборудования электронного производства. Представлены результаты экспериментальных исследований фрикционных характеристик твердосмазочных покрытий. Разработаны конструктивно-технологические решения опорных узлов механических систем, позволяющие улучшить экологию вакуумной технологической среды.

Ключевые слова: экология вакуумной технологической среды, электронное производство, твердосмазочные покрытия, модели поверхностей трения, интенсивность изнашивания, газопоглотитель.

Многообразие технологических процессов электронного производства, в основе которых лежат сложные физико-химические, электрофизические, термические и другие процессы, осуществляемые в контролируемой вакуумной среде, требует применения оборудования, в котором цикл обработки изделия в значительной степени или полностью совершался бы автоматически, с использованием механических систем.

Работа механических систем в вакууме связана с введением в технологический объем пар трения, в которых кинематика относительного движения трущихся поверхностей обусловливает наличие в них либо пар трения покоя или скольжения, либо трения качения с проскальзыванием, являющихся источниками загрязнений технологической среды микрочастицами износа.

Для снижения трения и износа в элементах механических систем в условиях вакуума целесообразно использовать твердосмазочные композиционные покрытия, в которых в качестве связующего вещества используется эпоксидная смола в сочетании с твердой смазкой, например, дисульфидом молибдена или графитом и газопоглотителем, например, цеолитом, силикателем или алюмином [1]. такое покрытие наносится на втулку подшипника скольжения или другие трещущие детали. При этом остаточные в вакуумной системе газы адсорбируются газопоглотителем на поверхностях трения и образуют плотную пленку из адсорбированных молекул, которая снижает адгезионное взаимодействие и в сочетании с твердой смазкой уменьшает коэффициент трения и изнашивание поверхностей, улучшая тем самым экологию технологической среды.

© Васин В. А., Ивашов Е. Н., Степанчиков С. В., 2011
На рис. 1 представлены зависимости интенсивности изнашивания твердосмазочных композиционных покрытий, содержащих газопоглотитель — цеолит (CaA) и различные компоненты — графит (C) или дисульфид молибдена (MoS2), связанные эпоксидной смолой (ЭС), от времени.

![Рис. 1. Зависимости интенсивности изнашивания различных твердосмазочных композиционных покрытий на основе газопоглотителя цеолит с различными компонентами от времени](image1)

Здесь интенсивность изнашивания определяется через интенсивность линейного изнашивания \(J_L \):

\[
J_L = \rho S J_h
\]

где \(\rho \) — плотность изнашиваемого материала;

\(S \) — площадь трения.

Интенсивность изнашивания покрытий на основе газопоглотителя силикагель (KCM-6) с различными компонентами показана на рис. 2. На рис. 3 приведены зависимости коэффициентов трения предлагаемых покрытий от разрежения в вакуумной камере. Эксперименты проводились с подшипниками скольжения, в втулки которых наносились твердосмазочные покрытия.

![Рис. 2. Зависимости интенсивности изнашивания твердосмазочных композиционных покрытий на основе газопоглотителя силикагель (KCM-6) с различными компонентами от времени](image2)

Одним из основных требований, предъявляемых к подшипникам скольжения элементов механических систем, является обеспечение заданной точности. В связи с этим необходимо, чтобы изнашивание цапфы или втулки за определенный промежуток времени и для конкретных условий эксплуатации не выходило за пределы допустимых значений, гарантирующих надежность подшипника скольжения по точности.

Оценка интенсивности изнашивания производится в зависимости от механических свойств материалов цапфы и втулки, микрогеометрии контактирующих поверхностей и удельного давления в контакте. Величина максимального удельного давления в контакте определяется:

\[
P_0 = \frac{P}{2R_1 \ell},
\]

где \(P \) — радиальная нагрузка на опору;

\(R_1 \) — радиус цапфы;

\(\ell \) — длина цапфы.

При оценке интенсивности изнашивания приняты следующие допущения.

1. Поверхность трения моделируется сферическими сегментами высотой \(R_{max} \) и радиусом \(R \). Поверхности трения могут быть смоделированы в виде сферы, цилиндра или конуса (рис. 4, а—е) [2]. Наиболее пригодной для расчетов на трение и изнашивание и предпочтительной является сферическая модель, которая обладает осевой симметрией, что особенно важно при рассмотрении проблемы с учётом кинематики. При сферической модели осевая симметрия отражает изотропность трения. Две другие формы способны описать анизотропные эффекты. В этих формах нормальные напряжения на пе- риферии (см. рис. 4, б) и в центре (см. рис. 4, в) пятна контакта являются неопределенными.
Радиус основания сегмента при $R_{\max} << R$ будет равен
$$r = \sqrt{2RR_{\max}},$$
где R_{\max} — максимальная высота микронеровностей.
Расстояние между микровыступами двух шероховатостей равно $2r$.
Тогда сила, действующая на единичную микронеровность, равна
$$T = 4P_0 r^2.$$
Радиус пятна контакта определяется:
$$a = \frac{0.883}{2} \frac{T}{E_1 + \frac{1}{E_2}} R,$$
где T — сила, действующая на единичную микронеровность;
E_1, E_2 — модули упругости материала цапфы и втулки;
R — радиус единичной микронеровности, сформированной в виде сферического сегмента.
После подстановки выражений (4) и (5) в (6) получим для случая упругого контактного взаимодействия
$$a = 1.43 \sqrt{\frac{R^2 R_{\max} P_0}{E_1 + \frac{1}{E_2}} R}.$$
Для случая пластического контактного взаимодействия радиус пятна контакта находится из условия, что контактные напряжения σ_x на превышают $10 H_u$, т.е.
$$\sigma_x = 10 H_u,$$
или
$$\frac{1.5T}{a} = 10 H_u.$$
Откуда, используя выражения (4) и (5), получим
$$a = 0.618 \sqrt{\frac{R_0 R_{\max} R}{H_u}}.$$
Максимальное удельное давление, называемое допускаемым удельным давлением $[P_0]$, при котором еще выполняются соотношения (6), будет определяться из следующих соображений.
Наибольшее контактное напряжение возникает в центре круга касания двух микронеровностей и определяется:
$$\sigma_{\max} = \frac{2R_0 R_{\max}}{3 \sqrt{2}} \frac{P_0}{R_{\max}^2 \left(\frac{1}{E_1} + \frac{1}{E_2} \right)^2}.$$
Откуда с учетом выражения (8)
$$[P_0] = \frac{125H_u R}{R_{\max}^2 \left(\frac{1}{E_1} + \frac{1}{E_2} \right)}.$$

Однако сферическая модель, где микронеровности моделируются в виде полусфер, не всегда отражает картину реальной шероховатости. Поэтому моделируем поверхность трения в виде сферических сегментов, форма которых ближе к форме реальной поверхности.

2. Износ происходит в зоне вершин микронеровностей.
3. Влияние температуры в зоне трения учитываются изменениями механических свойств материалов.
4. Адгезионные свойства и физико-химические изменения поверхностных слоев не учитываются.

Интенсивность линейного изнашиваивания J_h определяется как средняя толщина изношенного слоя на поверхности материала Δh, удаленная с единицы пути трения L [3]:
$$J_h = \Delta h / L.$$
Фактически материал удаляется лишь с реальных пятен контакта, поэтому вводится понятие удельной интенсивности изнашиваивания i_h, величина которой выражается зависимостью
$$i_h = \Delta h_1 / \ell,$$
где Δh_1 — средняя толщина изношенного слоя контакта;
ℓ — путь трения, равный диаметру пятна контакта.

Между интенсивностью изнашиваивания J_h и удельной интенсивностью изнашиваивания i_h существует следующая связь:
$$J_h = i_h \frac{A_s}{A_R},$$
где A_s — фактическая площадь контакта;
A_R — номинальная площадь контакта.
Средняя толщина изношенного слоя шероховатой поверхности за одно нарушение фрикционной связи определяется:
$$\Delta h_1 = \frac{R - \sqrt{R^2 - a^2}}{N},$$
где R — радиус единичной микронеровности, сформированной в виде сферического сегмента;
a — радиус единичного пятна контакта;
N — количество циклов деформации до разрушения.
Интенсивность линейного изнашивания с учетом выражений (1)—(3) равна

\[J_h = \frac{R - \sqrt{R^2 - a^2}}{2aN} \cdot \frac{A_a}{A_R}, \quad (10) \]

где а — радиус пятна контакта.

\[A_a = \pi a^2; \quad (11) \]

\[A_R = \pi r^2. \quad (12) \]

Количество циклов деформации N, приводящих к разрушению, зависит от напряженного состояния единичного пятна контакта. Если напряжение в контакте превышает допустимое, то количество циклов деформации до разрушения будет определяться [2]:

\[N = 10^7 \left(\frac{\sigma_k}{\sigma_k} \right)^6. \quad (13) \]

Расчетные контактные напряжения следует определять по формулам (7) или (9) в зависимости от характера контактного взаимодействия.

Подставив выражения (11)—(13) в формулу (10), получим

\[J_h = \frac{\left(R - \sqrt{R^2 - a^2} \right) a}{2 \cdot 10^7 \left(\frac{\sigma_k}{\sigma_k} \right)^6 R^2} \]

или

\[J_h = 5 \cdot 10^{-8} \left(\frac{\sigma_k}{\sigma_k} \right)^6 \frac{a \left(R - \sqrt{R^2 - a^2} \right)}{R^2}. \]

Предложенные и исследованные твердосмазочные покрытия позволяют создавать механические системы с пониженной интенсивностью изнашивания и уменьшать уровень загрязнений, привносимых элементами оборудования.

Повысить качество среды можно с помощью конструктивно-технологических решений опорных узлов механических систем.

Так, в качестве примера на рис. 5 представлена конструкция опоры скольжения для работы в экологически чистых вакуумных средах.

Опора содержит цапфу 1 вала 2, охватывающую ее втулку 3, внутренняя поверхность которой выполнена с концентрически расположенными кольцевыми канавками 4. Втулка выполнена из пьезоэлектрического материала с нанесенным твердосмазочным покрытием. В качестве пьезоэлектрического материала используется цирконат свинца (PbZrO₃) или титанат бария (BaTiO₃).

При вращении цапфы, например, при использовании опоры в передаточном механизме, при передаче крутящего момента на втулку действует радиальная нагрузка. Под действием этой нагрузки на пьезоэлектрической втулке возникает электрический заряд, что приводит к скапливанию частиц износа в концентрично расположенных кольцевых канавках под действием электрических сил.

Средство улавливания микрочастиц износа также может быть выполнено в виде втулки из магнитострикционного материала, в котором под действием нагрузки возникает заряд и магнитное поле. В результате этого микрочастицы износа скапливаются в концентрично расположенных кольцевых канавках под действием магнитных сил. В качестве магнитострикционного материала могут быть использованы никель, ряд ферритов и некоторые редкоземельные элементы.

Таким образом, предлагаемые конструктивно-технологические решения позволяют не только снижать интенсивность изнашивания, но и локализовать образующиеся микрочастицы износа, улучшая тем самым экологию вакуумной технологической среды в электронном производстве.

Литература

1. Ивашов Е. Н., Степанчев С. В. Способ уменьшения трения в вакууме. Пат. 2014551 РФ от 15.06.94. Бюл. № 11.