Компьютерная лингвистика
и интеллектуальные технологии

По материалам ежегодной международной конференции «Диалог» (2016)

Выпуск 15

Computational Linguistics and Intellectual Technologies


Issue 15
Программный комитет конференции выражает искреннюю благодарность Российскому фонду фундаментальных исследований за финансовую поддержку

Редакционная коллегия: В. П. Селегей (главный редактор), А. В. Байтин, В. И. Беликов, И. М. Богуславский, Б. В. Добров, Д. О. Добровольский, Л. М. Захаров, Л. Л. Иомдин, И. М. Кобозева, Е. Б. Козеренко, М. А. Кронгауз, Н. И. Лауфер, Н. В. Лукашевич, Д. Маккарти, П. Наков, Й. Нивре, Г. С. Осипов, А. Ч. Пиперски, В. Раскин, Э. Хови, С. А. Шаров, Т. Е. Янко


Сборник включает 68 докладов международной конференции по компьютерной лингвистике и интеллектуальным технологиям «Диалог 2016», представляющих широкий спектр теоретических и прикладных исследований в области описания естественного языка, моделирования языковых процессов, создания практически применимых компьютерных лингвистических технологий.

Для специалистов в области теоретической и прикладной лингвистики и интеллектуальных технологий.

© Редакционная коллегия сборника «Компьютерная лингвистика и интеллектуальные технологии» (составитель), 2016
Содержание

Приглашенные доклады

Alessandro Moschitti
Deep Learning and Structural Kernels for Semantic Inference: Question Answering Applications to Formal Text and Web Forums ....................... B

Mark Steedman
A Theory of Content for NLP ................................................................................ C

Bonnie Webber
Concurrent Discourse Relations ........................................................................ D

Основная программа конференции

Antonova A., Kobernik T., Misyurev A.
The Impact of Different Data Sources on Finding and Ranking Synonyms for a Large-Scale Vocabulary ...................................................... 2

Апресян В. Ю.
Глаголы исчезнуть и пропасть: многозначность и семантическая мотивация .................................................................................. 16

Апресян В. Ю., Шмелев А. Д.
Семантика и прагматика последнего и предпоследнего ......................... 28

Arkhangelskiy T. A., Lander Yu. A.
Developing a Polysynthetic Language Corpus: Problems and Solutions ........ 40

Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K., Gomzin A., Turdakov D.
Сравнение архитектур нейронных сетей в задаче анализа тональности русскоязычных твитов ......................................................... 50

Balčiūnienė I., Kornev A. N.
Linguistic Disfluency in Children Discourse: Language Limitations or Executive Strategy? ................................................................. 59

Баранов А. Н.
О дискурсивных режимах использования оценочных слов и выражений ....................................................................................... 72

Benko V., Zakharov V. P.
Very Large Russian Corpora: New Opportunities and New Challenges .......... 83

\* Доклады упорядочены по фамилии первого автора в соответствии с порядком английского алфавита | The reports of each section are ordered by the surname of the first author in compliance with the English alphabet.
Berdičevskis A., Eckhoff H., Gavrilova T.  
**The Beginning of a Beautiful Friendship: Rule-Based and Statistical Analysis of Middle Russian**  .......................................................................................................................... 99

Clairet N., Ramadier L., Lafourcade M.  
**Using Constraints on a General Knowledge Lexical Network for Domain-Specific Semantic Relation Extraction and Modeling**  ................................................. 112

Bukia G. T., Protopopova E. V., Panicheva P. V., Mitrofanova O. A.  
**Estimating Syntagmatic Association Strength Using Distributional Word Representations**  ........................................................................................................................................ 124

Dobrovolskij D., Pöppel L.  
**The Discursive Construction дело в том, что and its Parallels in other Languages: a Contrastive Corpus Study**  ................................................................. 134

Dubatovka A., Kurochkin Yu., Mikhailova E.  
**Automatic Generation of the Domain-Specific Sentiment Russian Dictionaries**  ........................................................................................................................................ 146

Федорова О. В.  
**Временная координация между жестовыми и речевыми единицами в мультимодальной коммуникации**  ........................................................................ 159

Galitsky B. A., Ilvovsky D. A., Chernyak E. L., Kuznetsov S. O.  
**Style and Genre Classification by Means of Deep Textual Parsing**  ......................................................... 171

Гришина Е. А.  
**Вид русского глагола: жестикуляционный профиль**  ........................................................................... 182

Инькова О. Ю., Попкова Н. А.  
**Структура двухместных коннекторов русского языка в свете корпусных данных**  .................................................................................................................. 200

Iomdin B. L., Lopukhin K. A., Lopukhina A. A., Nosyrev G. V.  
**Word Sense Frequency of Similar Polysemous Words in Different Languages**  ................................................................................................................................. 214

Karpov I. A., Kozhevnikov M. V., Kazorin V. I., Nemov N. R.  
**Entity Based Sentiment Analysis Using Syntax Patterns and Convolutional Neural Network**  ................................................................................................................................. 225

Khokhlova M. V.  
**Large Corpora and Frequency Nouns**  .......................................................................................................... 237

Князев С. В.  
**Коартикуляция на стыках слов как показатель наличия просодического шва в русском языке**  ................................................................................................. 251

Колмогорова А. В.  
**«Как бы не я и как бы не с тобой»: прагматика референциального смещения в устной речи**  ................................................................................................................................. 264
Koltsova O. Yu., Alexeeva S. V., 2, Kolcov S. N.
An Opinion Word Lexicon and a Training Dataset for Russian Sentiment Analysis of Social Media .......................................................... 277

Koslowa O., Kutuzov A.
Improving Distributional Semantic Models Using Anaphora Resolution during Linguistic Preprocessing ........................................ 288

Kotelnikov E. V., Bushmeleva N. A., Razova E. V., Peskisheva T. A., Pletneva M. V.
Manually Created Sentiment Lexicons: Research and Development ........ 300

Крейчи С. А., Кривнова О. Ф., Ступина Е. А.
Проблема идентификации диктора в условиях шепотной речи .......... 315

Крейдлин Г. Е., Шабат Г. Б.
Естественный язык и язык геометрических чертежей ....................... 326

Кривнова О. Ф.
Просодическое членение звучащего текста: текстовая локализация дыхательных пауз ......................................................... 340

Кустова Г. И.
Дистрибутивные биместоименные конструкции типа кто куда .......... 355

Levontina I. B.
Lexicalized Prosody and the Polysemy of Discourse Markers .............. 369

Lobanov B. M.
Comparison of Melodic Portraits of English and Russian Dialogic Phrases ... 382

Lopukhin K. A., Lopukhina A. A.
Word Sense Disambiguation for Russian Verbs Using Semantic Vectors and Dictionary Entries ................................................................. 393

Loukachevitch N. V., Lashevich G., Gerasimova A. A., Ivanov V. V., Dobrov B. V.
Creating Russian WordNet by Conversion ........................................... 405

Loukachevitch N. V., Rubtsova Y. V.
SentiRuEval-2016: Overcoming Time Gap and Data Sparsity in Tweet Sentiment Analysis ................................................................. 416

Lukashevich N. Y., Klyshinsky E. S., Kobozeva I. M.
Lexical Research in Russian: are Modern Corpora Flexible Enough? ........ 427

Lyashevskaya O. N., Kashkin E. V.
Welcome to the Club: Designing the Inventory of Semantic Roles for Adjectives ............................................................................ 440

Lyutikova E. A.
Formal Modeling of Case Variation: a Parametric Approach .................. 455
Mazurova M.  
Grammatical Dictionary Generation Using Machine Learning Methods ........ 471

Nedoluzhko A., Schwarz A., Novák M.  
Possessives in Parallel English-Czech-Russian Texts ........................................... 483

Orekhov B., Krylova I., Popov I., Stepanova E., Zaydelman L.  
Russian Minority Languages on the Web: Descriptive Statistics ......................... 498

Падучева Е. В.  
К семантике русского вида: момент наблюдения и дискурсивный контекст .................................................. 509

Перова Д. М., Бондаренко К. Е., Добрушина Н. Р.  
База данных для исследования вариативности твердых/мягких согласных перед e в заимствованных словах ........................................... 528

Piperski A. Ch., Kukhto A. V.  
Intra-speaker Stress Variation in Russian: A Corpus-driven Study of Russian Poetry ........................................................................................................ 540

Подлесская В. И.  
«Но по расчету по моему должна родить»: конструкции с союзом no по данным корпусов с просодической разметкой ............ 551

Потанина Ю. Д., Подлесская В. И., Федорова О. В.  
Вербальная рабочая память и лексико-грамматические сигналы речевых затруднений: данные русского мультимодального корпуса 566

Romanov A. V., Kuznetsova M. V., Bakhteev O. Yu., Khritankov A. S.  
Machine-Translated Text Detection in a Collection of Russian Scientific Papers ........................................................................................................ 578

Селегей Д., Шаврина Т., Селегей В., Шаров С.  
Автоматическая морфоразметка корпусов русскоязычных социальных медиа: обучение и оценка качества ................................. 589

Шаронов И. А.  
Дискурсивные слова и коммуникативы ................................................................. 605

Шерстинова Т. Ю.  
Наиболее употребительные слова повседневной русской речи (в гендерном аспекте и в зависимости от условий коммуникации) ..... 616

Shirokova A., Telesnin B., Rogozhina V.  
Multi-Pronunciation Lexicon for Russian Automatic Speech Recognition (Pilot Study) ........................................................................................................ 632

Сомин А. А., Полий А. А.  
Беларусь vs. Белоруссия: структура одного лингвополитического конфликта в социальных медиа ................................................................. 645
Sorokin A. A., Baytin A. V., Galinskaya I. E., Rykunova E. D., Shavrina T. O.
SpellRuEval: the First Competition on Automatic Spelling Correction for Russian ................................................. 660

Sorokin A. A., Khomchenkova I. A.
Automatic Detection of Morphological Paradigms Using Corpora Information ....................................................... 674

Sorokin A. A., Shavrina T. O.
Automatic Spelling Correction for Russian Social Media Texts ............................................. 688

FactRuEval 2016: Evaluation of Named Entity Recognition and Fact Extraction Systems for Russian .............................................. 702

Stepanova M. E., Budnikov E. A., Chelombeeva A. N., Matavina P. V., Skorinkin D. A.
Information Extraction Based on Deep Syntactic-Semantic Analysis ............................................. 721

Стойнова Н. М.
Контроль бессоюзного целевого инфинитива при глаголах каузации движения в русском языке: данные НКРЯ ......................... 733

Сысоев А. А., Андреанов И. А.
Распознавание именованных сущностей: подход на основе вики-ресурсов ............................................. 746

Тискин Д. Б.
«Аппозициональные» и «соопределяющие» условные клаузы: к вопросу о локализации условной семантики .................................... 756

Toldova S. Yu., Bergelson M. B., Khudyakova M. V.
Coreference in Russian Oral Movie Retellings (the Experience of Coreference Relations Annotation in “Russian CliPS” corpus) ......................... 769

Tutubalina E. V., Braslavski P. I.
Multiple Features for Multiword Extraction: a Learning-to-Rank Approach ............................................. 782

Урысон Е. В.
Видовые пары, семантическая теория и критерий Маслова .......................... 792

Валова Е. А., Слюсарь Н. А.
Сравнение корпусного и экспериментального метода на примере исследования синтаксических свойств энклитики же ..... 806

Вилинбахова Е. Л.
«Как говорится, статья есть статья»: некоторые аспекты функционирования тавтологий в коммуникации ......................... 817
Vinogradova O. I.
The Role and Applications of Expert Error Annotation in a Corpus of English Learner Texts .................................................................................................................. 830

Янко Т. Е.
Новые интонационные конструкции русского языка: разработка транскрипции .................................................................................................................. 841

Зализняк Анна А.
База данных межъязыковых эквиваленций как инструмент лингвистического анализа ........................................................................................................ 854

Зализняк Анна А., Микаэлян И. Л.
К вопросу об аспектуальном статусе конативных пар в русском языке: почему искать не может означать найти? .................................................. 867

Abstracts ........................................................................................................ 877

Авторский указатель ................................................................................... 900

Author Index ................................................................................................... 902
THE ROLE AND APPLICATIONS OF EXPERT ERROR ANNOTATION IN A CORPUS OF ENGLISH LEARNER TEXTS

Vinogradova O. I. (olgavinogr@gmail.com)
Research University Higher School of Economics, Moscow, Russia

The paper presents the rationale for the decisions that were taken in the set-up and further development of a learner corpus of student texts written in English by Russian learners of English, the only Russian learner corpus in the open access. The tool of manual expert annotation is in the focus of the present observations, and after introducing categorization of errors applied in annotation, the complicated cases that arose in annotation practices have been looked into followed by comparison of the annotation statistics over the three stages in the corpus development. For that purpose, texts annotated by different groups of participants in the process of two experiments were used to spot the problematic areas in annotation. The main pedagogical applications of the learner corpus in teaching EFL—the opportunities to create automated training exercises and placement and progress tests custom-made for specific groups of students—are outlined in the concluding part of the paper.

Keywords: learner corpora; annotation; corpus research; computational tools

ЗНАЧЕНИЕ И ПРИМЕНЕНИЕ ЭКСПЕРТНОЙ АННОТАЦИИ ОШИБОК В КОРПУСЕ АНГЛОЯЗЫЧНЫХ УЧЕБНЫХ ТЕКСТОВ

Виноградова О. И. (olgavinogr@gmail.com)
НИУ ВШЭ, Москва, Россия

Ключевые слова: учебные корпуса; аннотирование; корпусные исследования; компьютерные инструменты

A learner corpus is a systematic computerised collection of texts that are written and/or oral productions of language learners. As all other corpora, a learner corpus is usually provided with convenient means of browsing and search options, with a system for marking the texts for pedagogical and/or research purposes, and ideally with additional visualisation of statistical processing of the search results. The first

---

1 The study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE) in 2016, and the author is a member of the team that has won a Research Team Project Competition in 2016 (16-05-0057 at https://www.hse.ru/en/science/scifund/nug).
researches in this area of computational linguistics date back to late 80s—early 90s, and the main achievements in the area have been well reviewed in the collection edited by Granger, Gilquin and Meunier 2013. The main point of interest for linguists working on the development of a learner corpus is the choice of annotation. Learner corpora are usually error-tagged, which means that spelling, lexical, and grammatical errors in the texts have been outlined with the help of a standardised system of error tags. The exhaustive list of important references for the discussion of the use of annotation in learner corpora can be seen in Pustejovsky and Stubbs 2013 and Wilcock 2009. The following researchers wrote on approaches to annotation in different learner corpora: Granger 2003, Hovy & Lavid 2010, and on the decisions concerning the choice of annotation systems, see Shtindlova et al. 2014, Lee et al. 2014, and many others.

This article provides rationale for the decisions on corpus annotation taken in setting up one of the first Russian learner corpora and to our knowledge the only learner corpus of English student texts in the open access: this corpus is free to search in and freely downloadable. The name of the corpus, REALEC, stands for Russian Error-Annotated English Learner Corpus, and its texts are now available at http://realec.org and at http://realec.org/hse/#/data_4_staff. The focus will be placed on evaluating how the chosen tools and the annotation workflow affect the results of annotation. The paper concludes by discussing the prospects of how manual expert tagging in this particular corpus can be used in creating a few pedagogical and research applications.

The corpus now comprises almost 3,400 pieces of students’ writing (with about 838,000 word tokens), of which essays written in preparation for IELTS and during the examination of IELTS type make up the main part. It was initially set up as a pedagogical tool for EFL instructors who teach a course of general English, which includes preparation for IELTS, and also for professors teaching Academic Writing in English. The initial goals were to provide those instructors with the tool for marking written works submitted by their students, as well as to give instructors the opportunities to carry out their independent research, and at the same time to provide students with the easy means to see which errors prevail in their writing. To satisfy these three areas of need, expert error annotation was designed on the BRAT platform\(^2\) (see Hovy (2015), p. 5 on growing popularity of BRAT).

At the present time REALEC has a well developed system of hierarchical tags to mark the errors, and these tags are shown above the text as labels in different colours along with suggestions on how to correct the error. REALEC error annotation scheme consists of four layers: error type, error cause, linguistic ‘damage’ caused by the error, and the impact of the error on general understanding of the text. The first of the annotation layers is the main source of knowledge about the mistake a particular student has made, so the paper only deals with this layer of annotation process, and the term ‘annotation’ will be reserved in this paper for assigning tags that specify error type. The scheme includes 151 categories organised into a tree-like structure presented in Figure 1.

\(^2\) Stenetorp et al. 2012
In REALEC annotation, the following two important principles are observed: first, annotators mark as error spans only the areas of the text with clearly identified mistakes, and, second, they choose the most specific tag available in the scheme for the error they have spotted, with the exception of some special cases, when they can assign one of the more general tags.

Expert annotation in a learner corpus has to be continuously evaluated. On the question of the comparative evaluation of expert manual annotation and automated error annotation, there are three important points:

- Learner corpora are usually proprietary and often cannot be shared (Chodorow et al. 2010 and Chodorow et al. 2014). On the contrary, REALEC, as was mentioned above, is open for research.
- Learner corpora are as a rule expensive to annotate manually, and any alternative to time-consuming expert annotation has to be applied and tested. Some industrial applications have been reviewed by Chodorow et al. 2010 and Sorokin &

---

3 As can be seen from a “+” in the little window, some error tags—namely, all of the Grammar area, Word Choice in Vocabulary area, and two tags in the Discourse area—Referential device and Incoherent tenses—are further subdivided into classes and subclasses of specific tags not demonstrated in Figure 1.
Forsyth 2008, but at present they do not seem to give a valid alternative to manual pedagogical endeavours.

- The last two decades have seen an explosion in the development of NLP tools that aim to detect and correct errors made by learners of English as a Second Language (ESL) or English as a Foreign Language (EFL), so to meet this growing need, annotation schemes have to be built into the approach that combines automated detection of simpler errors with expert annotation of more sophisticated ones. An approximation to such a system can, for instance, be seen in the CEA—computer-aided error analysis (Diez-Negrillo & Fernandez-Dominguez 2006); it is also presented in Yannakoudakis 2013. In the long run, there will arise the possibility of building a system that models human behaviour in the process of reading and making judgments about the value of someone’s writing.

- When learner corpora are to be used to investigate learning process, high-quality corpus annotations as a basis for analyses are of great importance, and primarily it implies minimising the number of annotation errors for each annotator (Glaznieks et al. 2014). That is why annotation schemes are always subject to scrutiny in the process of using a learner corpus, and as an example of this, Bayerl 2008 illustrates, on the one hand, various forms of ‘annotator drift’ as annotators get tired over time, and on the other, how their mutual agreement levels change over time during work with the corpus. This is precisely the area of the current research interests.

To check how the level of precision of manual annotation affects annotator agreement, we looked into the results of an annotator agreement experiment carried out in REALEC in 2015. There were 10 annotators involved—one leading the experiment, three English instructors familiar with the annotation practices, another three without any exposure to the annotation process in REALEC, and three more—students in computer linguistics proficient in English. All the participants were instructed on tagging practices at the beginning of the experiment and were given 30 student essays 150–300 words each with error spans outlined by the leader of the experiment, so that they had to identify the error in the outlined areas and to look for the appropriate tag, or take off the mark if they did not see any mistake. The results—thirty texts tagged by ten annotators—were then subjected to two stages of research.

The first stage dealt with the procedure of calculating inter-rater agreement. The standard procedure is to use Krippendorff’s alpha (further KA) (Krippendorff 2007; Hayes and Krippendorff 2007, Krippendorff 2012), Cohen’s kappa or Fleiss’s kappa. The goal of achieving a decent agreement among human annotators is difficult even for such an algorithm-prone system as specific grammar errors (see, for example, Bryant & Hwee Tu Ng 2015). Full agreement is almost never possible with any non-trivial annotation task, but the extent of agreement is still an important index of how reliable the adopted annotation method is.

Our 2015 experiment to check the rate of agreement among annotators was reported at the 8th International Corpus Linguistics Conference in Lancaster (Kutuzov, Kuznenko, Vinogradova 2015), so I will only briefly state the results here. There were the total of 2128 error category assignments involved. A topical question was how
to apply KA in view of the hierarchical nature of our annotation scheme, and we did it by transforming our nominal scale of tags into an interval scale. To explain, grammar errors differ one from another, but they are even more different from discourse errors. We assigned digital representations, or ‘coefficients’, to our error categories according to our intuitive knowledge of which categories are closer, so that tags belonging to closely related categories were assigned closer values. For the five macro-categories in REALEC, we assigned specific digital representations to subcategories. For example, the morphological part of macro-category Grammar is further divided into POS subcategories of Verb, Noun, etc. These tags are assigned different digital representations ("1", "4", "7", etc), whereas tags deeper down the hierarchy are assigned the same values as the upper ones. Between macro-categories we made ‘gaps’ 50 points wide.

At the next level of the annotation scheme, we went down to the third-level subcategories (for example, Tense, Voice, Modals, etc). The same principle gave us the way to compute Krippendorff’s alpha as if annotators had assigned interval digital values, and not nominal tags. As a result, we got Krippendorff’s alpha = 0.57 for the second level annotation (tags like Noun, Verb, Word choice, Tautology, etc), even higher than at the upper level. The third level annotation had agreement rate equal to 0.55. Computing KA for the second and the third annotation levels as nominal categories (binary distance) gave only 0.5 and 0.4 correspondingly. The resulting index was satisfactory (KA = 0.57).

At the second stage, which has not been presented in a report or paper yet, the texts annotated in the experiment were used to research the cases of, and spot the reasons for, the lack of annotators’ agreement. I compared the results of each participant in each of the three groups of annotators with the results of all participants from two other groups, and then calculated the average values for each three participants of groups of the type “EFL instructor familiar with annotation/English student or instructor unfamiliar with annotation/computer linguist”. Fig. 2 shows the statistics for the average group.

![Fig. 2. Variation of agreement figures (average percentage) in agreement experiment](image-url)
The source data for this graph represents the average figures shown in this experiment, namely, 33 error spans per text on average initially outlined, of which in 6 on average annotators did not find a mistake and thus did not assign any tags, and among the 27 error spans where some tags were assigned annotators agree on average over 17 errors and disagree over 10. The extent of agreement in this case can be different—an annotator can agree about both the tag and the correction, or about one of them only. The following three examples illustrate it.

(1) *twice lucky* > *twice as lucky* (text 11) the same correction, different tags:
   “Absence of certain component” (a vocabulary tag)—1 annotator
   “Comparative degree of adverbs”—2 annotators
   “Prepositions”—1 annotator—wrong tag!
   “Absence of a component in clause or sentence” (a discourse tag)—1 annotator

(2) —*twice lucky* > *double lucky* (text 11) different corrections, different tags
   (“Vocabulary”—1 annotator)

(3) *And there was the same situation in 2001 with only a few variations in five cities* (text 3) the same tags, different corrections: all annotators used a tag
   “Standard word order” and some discourse tag to change *cities* for *provinces*,
   as well as the tag “Preposition” to change *in* for *for* or *among*, and they used
   one more discourse tag—“Coherence”—to show the need for a change in the
   construction. Nevertheless, the resulting corrections were different:

> *The same situation was in 2001, only with a few variations in five provinces*
> *And the situation was the same in 2001 with only a few differences for some provinces*
> *The same situation was in 2001 with only a few variations among five provinces*
> *The same situation was in 2001, only there were a few variations for the five provinces*

In 2016, our goal was to trace the effect of changes that have taken place in our work over three years of active annotation practices. For this purpose, we collected data on the use of annotation tags in the following three areas of REALEC:

1. the initial student texts (essays, paragraphs, texts written in Academic Writing course, and theses) collected over the first year of using the corpus and tagged by a group of students—participants of the research seminar (below referred to as ESL); the total of 1,239 texts with 361,240 tokens of error annotation;
2. IELTS-type essays from different departments of the Higher School of Economics dating back to 2014–2015 academic year and annotated by students in the Bachelor’s course in linguistics at the HSE as their summer practical work (below referred to as IELTS); the total of 1,941 texts with 433,523 tokens of error annotation;
3. essays written in preparation for IELTS-type examination by students of one EFL instructor and annotated by students themselves or in peer tagging under the supervision of their instructor (below referred to as current subcorpus
and labeled as 2ndYear 2015–2016); the total of 218 texts with 43,181 tokens of error annotation.

In each part of the corpus, we collected data on the use of specific tags labeling student errors, and separately—on the use of highest-level general tags used by annotators. As stated above, the tag to be assigned has to be as specific as possible, and a higher-level (more general) tag can be used in one of the two cases—when there is no further division (for example, there no “Singular” or “Plural” tags for nouns—we only have a more general “Noun number” tag), or when the use of one more general tag simplifies the use of three or more specific tags of the same level. The example of the latter case is the following:

(4) The almost equal number of increasing international graduates was observed…
> The almost equal increase in the percentage of international graduates was observed… (text 6)

An annotator can either use three specific discourse tags to show the errors made—“Coherence”, to change number for the word percentage; the same tag for the change from increasing to increase (NOT a vocabulary error!), and “Absence of a component in a clause or sentence” to add preposition in to the combination increase in the percentage, or choose to use one general tag—“Discourse” to signify the overall change.

Figs. 3–5 below demonstrate the variation in annotation statistics in three areas of REALEC:

![Fig. 3. Variation in the use of error tags in ESL (the initial learner corpus)](image)

It can be concluded from the graph on the right that general tag DISCOURSE was applied to the overwhelming majority of cases when annotators could not classify errors as grammar or vocabulary, and also that there was insufficient subdivision of discourse errors. Correspondingly, we worked towards eliminating these deficiencies by adding more discourse tags and working out specific approaches to annotating discourse errors. As a result, in the more recent addition to the corpus the distribution of tags assigned by annotators is more even:
Fig. 4. Variation in the use of error tags in IELTS (the collection of examination essays in REALEC)

And finally, in the most recent texts added to REALEC—the essays written in 2015–2016 in preparation for their IELTS examination by the current students, who annotate themselves the errors that their instructors outline for them—there is only one case when a general tag was applied—it is the example very similar to the one discussed in (4) above:

(5) It should be noted that the poorest group of poor people spends less on petrol—nearly 4 percent>It should be noted that the percentage of money spent on petrol by the poorest group of poor people in the two countries is very different.

Instead of assigning three discourse tags—“Tautology” (because the same figure for the same group was given in the previous sentence), “Absence of the necessary information or detail” for the need to add in which country/countries, and “Coherence” for the need to talk about the difference for the two countries—the annotator decided to assign just one general tag—“Discourse,” and for this single example of the use of high-level tag no graph on the right is presented in Fig. 5.

Fig. 5. Variation in the use of specific error tags in the current area of REALEC

To observe more inter-rater differences in REALEC annotation practices, we carried out the experiment recently (below referred to as Experiment 2), in which 12 annotators were given the task to annotate the same text about 350 words long. All
annotators were familiar with the annotation workflow, even if to a different degree, and the research interest was to list points of disagreement of different kinds.

The total number of error spans marked in this text was 156. Of them, 57 were spotted by no more than 2 annotators, 23 were spotted by only 3 annotators, 30 errors were marked by at least 10 annotators of the 12 participants, and they all chose the same tag for these spans, and 6 areas spotted by at least 10 annotators were marked with different tags. What is left is 40 tags noticed by 4 to 9 annotators, and there are 19 among them in which the annotators agreed in their choice of tags (for the convenience of reference called in the graph “Part agree”). Fig. 6 shows the distribution of the spread of annotation decisions across the 12 annotators in the experiment.

![Variation in the use of specific error tags across annotators](image)

**Fig. 6.** Variation in the use of specific error tags by annotators in Experiment 2

To conclude, two annotation experiments demonstrated adequate reliability in the use of tags by REALEC annotators and in their approach to complicated errors. Hopefully, by increasing uniformity in annotation practice we will be able to approach automatisation of tagging in the learner corpus of student written works and, as a result, get closer to partially automated evaluation of student essays (as is indicated in McEnery & Xiao 2011). The corpus itself is a valuable pedagogical tool—for one, it provides a variety of possibilities for EFL instructors to create automated and semi-automated training exercises, as well as progress and placement tests on the basis of the mistakes annotated in learner texts in the corpus. The main feature of such exercises and tests is going to be their precision in targeting sharply at eliminating the specific mistakes that a particular group of learners is prone to making.

**References**


4. **Bryant Ch. & Hwee Tu Ng** (2015) Bryant, Christopher & Ng, Hwee Tou How Far are We from Fully Automatic High Quality Grammatical Error Correction?—in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 2015, pp. 697–707


Научное издание

Компьютерная лингвистика
и интеллектуальные технологии

По материалам ежегодной международной конференции «Диалог»

Выпуск 15 (22). 2016

Ответственный за выпуск А. А. Белкина
Вёрстка К. А. Климентовский
Дизайн обложки А. А. Светличная

Подписано в печать 12.05.2016
Формат 152 × 235
Бумага офсетная
Тираж 350 экз. Заказ № 72

Издательский центр «Российский государственный гуманитарный университет»
125993, Москва, Миусская пл., д. 6
Тел.: +7 499 973 42 06

Отпечатано с готового оригинала-макета в типографии ООО «Издательско-полиграфический центр Маска»
117246, Москва, Научный пр-д, д. 20, стр. 9