КАЧЕСТВО
ИННОВАЦИИ
ОБРАЗОВАНИЕ

№ 3
2013

w w w. q u a l i t y - j o u r n a l. r u
СОДЕРЖАНИЕ

ПРОБЛЕМЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ
С.Ю. ГУРЬЯНОВА
На пути к успешной карьере ... 3
Е.В. ГОЛЬЦОВА, В.С. КЛЕКОВКИН, О.Б. ГОЛЬЦОВА
Выявление требуемых компетенций для молодого специалиста на примере строительных специальностей ... 10

ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ
А.Г. БЕЗДУДНАЯ, Д.С. ЮДИН
Анализ факторов формирования малых инновационных предприятий на базе ВУЗов .. 16

КАЧЕСТВО И ИПИ(CALS)-ТЕХНОЛОГИИ

КАЧЕСТВО: РУКОВОДСТВО, УПРАВЛЕНИЕ, ОБЕСПЕЧЕНИЕ
А.В. БЕЛОВ, В.В. КОЗЛОВ
Эффективное управление IT ресурсами предприятия .. 20
А.Ю. ЛУКЬЯНЕНКО, Ю.Ф. ВОРОНИН
Обучающая автоматизированная система "Тренажер" для выработки навыков бездейственной позы ... 25

ПРОБЛЕМЫ КАЧЕСТВА ЖИЗНИ
В.Т. КАПИТАНОВ, О.Ю. МОИХИНА, А.Б. ЧУБУК
Об оценке состояния дорожно-транспортной аварийности в России 28

ПРИБОРЫ, МЕТОДЫ И ТЕХНОЛОГИИ
А.В. АНДРЕЙЧИКОВ, О.Н. АНДРЕЙЧИКОВА
Интеллектуальная система концептуального проектирования «IT QFD & AHP» на
основе методов структурирования функции качества и анализа иерархий 36
А.С. МАЛИНА, Н.И. БОРИСОС
Разработка методов определения качественных свойств линейных электрических
эквивалентных схем с использованием макромоделирования 44
А.Н. ТИХОМЕРЕВ, Б.В. ЖАДНОВ
Прогнозирование надежности структурно-сложных радиоэлектронных элементов
методами имитационного моделирования .. 50

ЭКОНОМИКА И УПРАВЛЕНИЕ
О.А. КОРНИЛОВА
Банковские инновации: современные тенденции и российские особенности 57
Л.А. КОТЕГОВА, М.Б. ЛУДИК
Инновационные подходы в диагностике кризисной ситуации и прогнозировании
банкротства предприятий ... 62
Д.И. ДОЛГОВ
Конкурентоспособность через целостное конкурентное поведение и
сертифицированный товарный ассортимент промышленной продукции 69
Т.И. ТОХИРОВ
Инновационный потенциал развития экономической безопасности автотранспортной системы ... 74

Сведения о членах редколлегии и об авторах статей можно найти на сайте www.quality-journal.ru

ЖУРНАЛ ЗАРЕГИСТРИРОВАН в Министерстве РФ по делам печати, телерадиовещания и средств массовых коммуникаций. Свидетельство о регистрации ПИ №77-9092.

ПОДЛИСТНЫЙ ИНДЕКС
в каталоге агентства "Роспечать" 80620, 80621; в каталоге "Пресса России" 14490.

ОПТИЧЕСКИЙ ИНДЕКС
Полиграфическая компания "ИВМ-дизайн". Москва, вул.Волховецкая 6-а, д.29. www.kvm-d.ru
© "Ежемесячный научно-практический журнал", 2013
Журнал входит в перечень ВАК РФ
Статьи рецензируются
В данной статье рассматривается метод снижения трудоемкости анализа линейных электрических эквивалентных схем на основе редукции исходной схемы, использующей свойство схем, состоящих из слабо связанных между собой подсхем с применением метода фазового моделирования. Для нахождения частотных и спектральных характеристик модели предлагается использовать модель, состоящую из макромоделей. Предлагаемый метод дает возможность исключить из подсчет несущественные для данной задачи внутренние переменные, оставляя лишь необходимые для пользователя входные и выходные характеристики и, тем самым, сократить количество уравнений анализируемой модели. При этом также появляется возможность организации параллельных вычислений - независимого анализа каждой макромодели в отдельности. Анализ модели, состоящей из макромоделей, производится с минимальной вычислительной погрешностью.

Ключевые слова: линейные электрические эквивалентные схемы, частотные характеристики, макромоделирование.

В связи с развитием и усилением средств вычислительной техники, а также радиоэлектронной аппаратуры происходит увеличение размерности математических моделей проектируемых объектов. Вследствие этого возникает необходимость разработки методов редукции, которые позволяли бы уменьшить трудоемкость анализа и оптимизации построенной математической модели. Широко распространен построение схем, использующих принципиальные электрические схемы радиоэлектронной аппаратуры (далее - РЭА), сложные элементы которых заменяются соответствующими схемами замещения; математические модели, построенные с помощью методов математических электронных средств и методов физических процессов, описываются системами дифференциальных уравнений в частных производных, где переход к системам обыкновенных дифференциальных уравнений производится с помощью методов конечных разностей и конечных элементов.

Под анализом математической модели понимается вычисление частотных характеристик модели (построение АЧХ и ФЧХ) и спектра матрицы модели (оценка устойчивости модели, вычисление собственных значений, нулей и полюсов системы). Основная задача, возникающая в процессе решения задач анализа - решение СЛАУ.

Основным методом снижения трудоемкости процессов анализа и оптимизации моделей линейных эквивалентных электрических схем являются: использование разреженности матрицы модели; использование ближайшей разреженности модели, которая состоит из слабо связанных между собой подсчет - диагональные методы; одноуровневое макромоделирование.

Проблема использования разреженных матриц при решении систем линейных алгебраических уравнений посвящены работы [1, 2, 3]. В качестве недостатков данного класса методов отметим следующие: методы, использующие разреженность матрицы математической модели проектируемого объекта, не позволяют использовать свойство блочно-разреженности исходной схемы, следовательно, не позволяют организовывать независимый анализ каждой подсчета. С помощью данного класса методов невозможно произвести исключение внутренних переменных модели, оставив соотношение типа "вход-выход". Данные методы зачастую приводят к снижению точности решений, стремясь сохранить разреженность матрицы при ее обработке.

Исследования диагональных методов анализа электрических схем проводились в работах [4, 5, 6]. Трудоемкость анализа схем, состоящей из подсчета, показана в работе [7]. Трудоемкость анализа модели снижается за счет использования блочно-разреженной структуры исходной схемы. К достоинствам данного метода можно отнести возможность организации независимого анализа каждой подсчета, входящей в исходную модель. Однако диагональные методы не позволяют произвести исключение внутренних переменных модели, оставив соотношение типа "вход-выход".

При проведении анализа математических моделей на различных этапах проектирования, интересующими нас параметрами математической модели, характеристики которых необходимо улучшить, являются все фазовые переменные, а лишь небольшая их часть. Как правило, это фазовые переменные типа "вход-выход". Исключить внутренние переменные модели позволяет метод одноуровневого макромоделирования.

Макромодель линейных схем представляет собой систему уравнений малой размерности, которая выражает соотношения типа "вход-выход" исходной модели и включает в себя явным образом ее варьируемые параметры. Дадим определение.
Пусть дана построенная в расширенном одно родном координатном базисе (РОКБ) модель исходной большой линейной эквивалентной электрической схемы:
\[
\begin{bmatrix}
A_{11}(p) & A_{12}(p) & X_{12}
\end{bmatrix}
\begin{bmatrix}
X_1
\end{bmatrix}
=
\begin{bmatrix}
Y_1
\end{bmatrix}
\]
(1)
где \(A_{ij}(p) = C_{ij} p + G_{ij},\ i,j = 1,2\); \(X_{12}, (M*1)\) - вектор "внутренних" переменных; \(X_{12}, (m*1)\) - вектор "внешних" переменных схемы, отражающих соотношения типа "вход-выход"; \(M >> m, m+M=N\).

Макромодель схемы, содержащая в себе только "внешние" переменные, имеет вид:
\[
[A_{11}(p)A_{12}(p) A_{22}(p)]X_1 = Y_1 - A_{22}(p)A_{12}(p)Y_2
\]
(2)
Модель вида (2) получена за счет алгебраического исключения вектора \(X_1\), содержащего "внутренние" переменные. Исключение основано на обращении полиномиальной матрицы \(A_{ij}(p)\) с сохранением аналитической зависимости от параметра \(p\) [8, 9].

Основной проблемой построения макромодели является вычисление в аналитическом виде матрицы \(A_{ij}(p)\). Для вычисления этой матрицы необходимо вычислить собственные значения и специальным образом нормированные правые и левые собственные векторы матрицы \(C_{ij} p + G_{ij}\). Среди работ, посвященных разработке алгоритмов макромоделирования, можно отметить следующие - [8, 9].

Одноуровневое макромоделирование не позволяет использовать свойство блочной разреженности исходной схемы, следовательно, не позволяет организовать независимый анализ подсхем. Трудоемкость процесса построения макромодели за один шаг редукции [8] быстро растет с увеличением числа исключаемых переменных, что не позволяет использовать его для схем, состоящих из сотен тысяч узлов и более. Однако зачастую такие схемы можно рассмотривать как объединение слабо связанных подсхем, что отражается в блочной разреженности матрицы модели. Использование этой особенности позволяет провести независимое макромоделирование подсхем с последующим их объединением в общую модель много меньшей размерности по сравнению с исходной моделью. Этот метод обеспечивает исключение внутренних переменных подсхем, оставляя соотношение типа "вход-выход", позволяет проводить независимое построение и анализ макромоделей подсхем, входящих в модель, сохраняя высокий уровень точности вычислений.

Формирование модели линейной эквивалентной электрической схемы, состоящей из макромоделей подсхем
Если исходная схема состоит из слабо связанных между собой подсхем, каждую подсхему можно представить в виде фазовой параметрической макромодели. Макромодели подсхем будут включены в общую схему с учетом значений сигналов на их внешних связях.

Пусть модель исходной задачи представлена в виде линейной эквивалентной электрической схемы, состоящей из n слабо связанных между собой подсхем. Пусть вектор \(X_i\) каждой подсхемы разбит на два подвектора \(X_{i1}, X_{i2}\) "внутренних" и "внешних" фазовые переменные размера \(M_i\) и \(m_i\) соответственно. Модель схемы, состоящей из слабо связанных между собой подсхем, каждая из которых представлена в виде макромодели вида (2), будет выглядеть следующим образом:
\[
\begin{bmatrix}
A_i(p,\hat{\Omega}) & 0 & 0 & A_{i1}\
0 & 0 & \ldots & 0
\end{bmatrix}
\begin{bmatrix}
X_{i1} \\
X_{i2} \\
\ldots \\
X_{i2n}
\end{bmatrix}
=
\begin{bmatrix}
Y_{i1} \\
Y_{i2} \\
\ldots \\
Y_{in}
\end{bmatrix}
\]
(3)
где \(A_i(p,\hat{\Omega}), i = 1,n\) - матрица макромодели i-ой подсхемы вида (2), содержащая в явном виде варьируемые параметры; \(\hat{\Omega}\) - вектор варьируемых параметров макромодели.
Модель вида (3) может быть сформирована за счет введения дополнительных фазовых переменных потокового типа, протекающих по ветвям, соединяющим подсхемы. Окаймление \(A_{i1}, A_{i2}, \ldots, A_{in}\) отражает связь между подсхемами. Матрица связей \(A_i(p,\hat{\Omega})\) является диагональной с отрицательными коэффициентами типа R, pl, 1/pC. Порядок матрицы \(A_i(p,\hat{\Omega})\) определяется количеством связей между подсхемами. Матрицы связей \(A_{i1}, A_{i2}, \ldots, A_{in}\) будут содержать ненулевые строки и столбцы, порядок следования которых будет зависеть от порядка включения в модель схемы дополнительных фазовых переменных потокового типа. Каждая ненулевая строка будет содержать один ненулевой коэффициент, равный "1" или "-1".

Расчет частотных и спектральных характеристик по модели линейной эквивалентной электрической схемы, состоящей из макромоделей подсхем
Вычисление частотных характеристик модели вида (3), состоящей из фазовых параметрических макромоделей вида (2), сводится к формированию системы линейных алгебраических уравнений (далее - СЛАУ) по модели (3) с помощью подстановки чisto мнимо значения, соответствующего выбранной точке частотного диапазона, в каждую макромодель
\[
\hat{A}_i(p,\hat{\Omega}), i = 1,n
\]
Решение полученной СЛАУ производится с помощью LQ-разложения полученной числовой матрицы модели. Ниже приведен пример построенной числовой матрицы модели, состоящей из двух подсхем, для заданной точки частотного диапазона:

● №3, 2013 ● ● ● ● ● ● ● ● КАЧЕСТВО ● ИННОВАЦИИ ● ОБРАЗОВАНИЕ ● ● ● ●
Курсивом показано окаймление - матрицы, отражающие связи между макромоделями подсхемы. Представленный пример соответствует модели следующего вида:

\[
\begin{bmatrix}
M_{11}(p) & M_{12}(p) & 0 & 0 & 0 & \ldots & 0 \\
M_{12}(p) & M_{22}(p) & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & M_{21}(p) & M_{22}(p) & -1 & \ldots & 0 \\
0 & 0 & M_{21}(p) & M_{22}(p) & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
\vdots \\
y_n
\end{bmatrix}
\] (4)

где \(M_1 \) - макромодель первой подсхемы; \(M_2 \) - макромодель второй подсхемы; \(x \) соответствует потоковой переменной, отражающей ток, протекающий через сопротивление, которым соединены подсхемы, \(x \times x \) - напряжение во входных и выходных узлах подсхем; \(y \) - внешнее воздействие.

Вычисление спектральных характеристик модели (3), состоящей из макромоделей подсхема вида (2), производится с помощью итерационного метода квадратичной интерполяции (метода Мольera [13]). На каждом шаге метода по модели (3) формируется числовая матрица с помощью подстановки в каждую макромодель \(A_i(p, Q_i) \), \(i = 1, n \) текущего аргумента метода Мольера, полученного на предыдущем шаге. По сформированной числовой матрице рассчитывается текущее значение аппроксимируемой параболической функции - значение определителя матрицы модели, которое вычисляется с помощью \(LQ \)-разложения:

\[f(p) = \det A(p) = \det(LQ) \]

Чтобы избежать повторного получения уже найденных корней, вычисленное значение определителя умножается на рациональный многочлен, содержящий уже найденные корни модели в знаменателе. Многочлен имеет вид: \(\prod_{i=1}^{n} \left(p - \lambda_i \right) \), где \(P_1 \) - наименьший корень, \(n \) - количество найденных корней. Данный подход изложен в [14].

Чтобы избежать сходимости метода к бесконечности в связи с увеличением степени многочлена в знаменателе, числитель умножается на коэффициент вида: \(K = \prod_{i=1}^{n} \left(p - \lambda_i \right) \), где \(\lambda \) - собственные значения, являющиеся элементами диагональной матрицы макромоделей подсхем, входящих в матрицу модели; \(n \) - суммарное количество собственных значений макромоделей; \(p \) - аргумент, задаваемый методом интерполяции.

Так как модель (3) для линейных схем строится в аналитическом виде, вычисления по такой модели производятся с минимальной погрешностью. Для сравнения точности вычислений приведен полученный спектр матрицы исходной плотной модели и полученный спектр матрицы редуцированной модели вида (4).

Собственные значения матрицы исходной плотной модели:
\[\text{Re} = \frac{-1.35897126341013E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-3.6744089578108E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-1.428540045686E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-2.347021578360E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-1.35259717704332E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]

Собственные значения матрицы редуцированной модели вида (4):
\[\text{Re} = \frac{-1.35897126341106E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-3.6744089578460E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-1.428540045686E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-2.347021578360E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]
\[\text{Re} = \frac{-1.35259717704332E+000}{1.00000000000000E+000} \quad \text{Im} = 0.00000000000000E+000 \]

Сравнительные оценки трудоемкости проведения анализа исходной плотной модели линейной электрической эквивалентной схемы и редуцированной модели, состоящей из макромоделей подсхем.
Наиболее трудоемкой задачей при построении макромодели вида (2) является вычисление в аналитическом виде матрицы \(A_i(p) \). Для вычисления этой матрицы необходимо вычислить собственные значения и специальным образом нормированные правые и левые собственные векторы матрицы \(C_i, p + G_i \). Для решения данной задачи используется метод преобразований подобия - сведение обобщенной проблемы собственных значений к обычной, отдельное корней с помощью QR-алгоритма, уточнение корней методом Курантовской [10, 11]. Количество необходимых требуемых вещественных мультипликативных операций \(\sim M_i^4 \).
Трудоемкость формирования модели, состоящей из макромоделей, складывается из трудоемкостей формирования каждой из макромоделей, входящих в общую модель: \(T = \sum_{i=1}^{n} T_{\text{макр}} \), где \(T_{\text{макр}} \sim M_i^4 \) - трудоемкость формирования i-й макромодели, где \(M_i \) - количество исключаемых уравнений i-й макромодели, \(n \) - количество макромоделей.
Трудоемкость формирования числовой матрицы модели, состоящей из макромоделей, определяется числом ВМО, необходимым для умножения каждой из матриц макромоделей на числовой аргумент: \(T = \sum_{i=1}^{n} t_{i1} \), где \(t_{i1} \) - порядок i-й макромодели; \(n \) - количество макромоделей.
Для расчета частотных характеристик в точке \(\omega \), выполняются следующие действия:
1. LQ разложение числовой матрицы модели, трудоемкость которого определяется выражением:
$T \sim (\sum_{i=1}^{n} m_i + n - 1)^{\frac{1}{2}} \ \text{ВМО}, \ \text{где} \ m_i \ - \ \text{порядок матрицы \ \text{i-ой максимодели};} \ n \ - \ \text{количество максимоделей; \ n-1} \ - \ \text{количество связей между максимоделями.}$

2. Решение СЛАУ с треугольной матрицей $T \sim (\sum_{i=1}^{n} m_i + n - 1)^{3} \ \text{ВМО}, \ \text{где} \ m_i \ - \ \text{порядок матрицы \ \text{i-ой максимодели;} \ n \ - \ \text{количество максимоделей; \ n-1} \ - \ \text{количество связей между максимоделями.}$

2. Решение СЛАУ с треугольной матрицей $T \sim (\sum_{i=1}^{n} m_i + n - 1)^{3} \ \text{ВМО}, \ \text{где} \ m_i \ - \ \text{порядок матрицы \ \text{i-ой максимодели;} \ n \ - \ \text{количество максимоделей; \ n-1} \ - \ \text{количество связей между максимоделями.}$

Итоговая трудоемкость расчета частотных характеристик:

$T \sim 2(\sum_{i=1}^{n} m_i + n - 1)^{3} + 2(\sum_{i=1}^{n} m_i + n - 1)^{2} \ \text{ВМО},$

где $m_i \ - \ \text{порядок матрицы \ \text{i-ой максимодели; \ n} \ - \ \text{количество максимоделей; \ n-1} \ - \ \text{количество связей между максимоделями.}$

Расчет одного корня методом Мюллера [13] состоит из следующих этапов:

1. ЛГ разложение матрицы модели для находления определителя. Трудоемкость составляет $T \sim (\sum_{i=1}^{n} m_i + n - 1)^{3} + k_{m} + 1 \ \text{ВМО}, \ k_{m} \ - \ \text{количество уже найденных корней - умножение в знаменателе на скобки, содержащие уже найденные корни для их исключения, 1 - умножение на специальный коэффициент в числитеle, содержащий собственные значения диагональных матриц максимоделей.}$

2. Согласно [12] для поиска одного корня методом Мюллера требуется в среднем 8 итераций. Следовательно, общая трудоемкость нахождения одного корня равна $T \sim 8(\sum_{i=1}^{n} m_i + n - 1)^{3} + k_{m} + 1) \ \text{ВМО.}$

Число корней максимодели равно $K = \sum_{i=1}^{n} k_i,$ где $k_i \ - \ \text{число собственных значений \ \text{i-ой максимодели; \ n} \ - \ \text{количество максимоделей.}$

Общая трудоемкость нахождения спектральных характеристик равна:

$T \sim K \times 8(\sum_{i=1}^{n} m_i + n - 1)^{3} + k_{m} + 1) \ \text{ВМО.}$

Трудоемкость расчета частотных характеристик в частотной точке $i\omega$ по модели общего вида размером N: $T \sim 2N^3 \ \text{ВМО}, \ k_{m} \ - \ \text{количество уже найденных корней - умножение в знаменателе на скобки, содержащие уже найденные корни для их исключения; 1 - умножение на специальный коэффициент в числитеle, содержащий собственные значения диагональных матриц максимоделей.}$

2. Решение СЛАУ с треугольной матрицей $T \sim 2N^2 \ \text{ВМО.}$

Итоговая трудоемкость расчета частотных характеристик:

$T \sim 2N^3 + 2N^2 \ \text{ВМО.}$

Трудоемкость расчета спектральных характеристик по модели общего вида размером N: $T \sim 2N^3 + 2N^2 \ \text{ВМО.}$

Расчет одного корня методом Мюллера:

1. ЛГ разложение матрицы модели для нахождения определителя. Трудоемкость составляет $T \sim 2N^3 + k_{m} + 1 \ \text{ВМО}, \ k_{m} \ - \ \text{количество уже найденных корней - умножение в знаменателе на скобки, содержащие уже найденные корни для их исключения, 1 - умножение на специальный коэффициент в числитеle, содержащий собственные значения диагональных матриц максимоделей.}$

По полученным оценкам трудоемкости можно построить следующий график - по оси абсцисс количество уравнений модели, по оси ординат - трудоемкость проведения частотного анализа модели в ВМО. Диапазон значений по оси абсцисс задан значениями от 0 до 1000 (рис. 1).

Оценка трудоемкости проведения частотного анализа

<table>
<thead>
<tr>
<th>Количество уравнений</th>
<th>Трудоемкость</th>
<th>Рис. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>500000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5000000</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>50000000</td>
<td></td>
</tr>
</tbody>
</table>

Трудоемкость вычисления частотных и спектральных характеристик исходной плотной модели размерностью N по порядку больше трудоемкости проведения анализа по редуцированной модели, содержащей из максимоделей, в силу того, что $\sum_{i=1}^{n} m_i + n - 1 << N^3.$

Выводы

Согласно приведенным оценкам трудоемкости процесса анализа моделей линейных электрических эквивалентных схем количество требуемых ВМО для нахождения частотных характеристик в заданной точке частотного диапазона приближенно равно $T \sim 2N^3 + 2N^2.$ Для исходной плотной системы уравнений, содержащей 1000 переменных, данная трудоемкость будет составлять $T \sim 2002000000 \ \text{ВМО.}$ Для редуцированной модели, содержащей из 10 максимоделей подсчет, содержащих 10 внешних переменных, будет составлять $T \sim 200200000 \ \text{ВМО, что примерно в 990 раз меньше трудоемкости расчета исходной модели.}$

Предложенный метод позволяет использовать свойство блочной разреженности исходной линейной схемы, состоящей из слабо связанных подсчет, и является усовершенствованным методом диагонализации. Также данный метод дает возможность проводить оптимизацию редуцированной модели в связи с тем, что максимодели подсчет в явном виде сохраняют важные характеристики на всех шагах решения задачи.
независимого построения макромоделей подсчётом с последующим их объединением в общую модель. Быстрое построение макромоделей, а также существенное уменьшение количества уравнений за счет исключения внутренних переменных подсчётом обеспечивает заметное ускорение процессов анализа и оптимизации модели, что, в свою очередь, снижает временные издержки проектирования сложных объектов. Появляется возможность проведения независимого анализа каждой макромодели. Точность вычислений сохраняется, т.к. отсутствует зависимость метода от разреженности матрицы модели.

Литература:
6. Попков В. Всебоющая инженерная наука Габриэля Крона // Вестник Международного Института А. Богданова. 2002. №3.
8. Борисов Н.И. Исследование и разработка методов снижения размерности и трудоемкости задач анализа и оптимизации линейных эквивалентных электрических схем на основе макромоделирования в САПР / Автореферат диссертации на соискание ученой степени доктора технических наук, Москва 1996.

Малина Анна Сергеевна, аспирант МИЭМ НИУ ВШЭ, тел.: 8(916) 511-54-62 e-mail: malinaannn@yandex.ru

Борисов Николай Иванович, д-р техн. наук, профессор каф. ИТС МИЭМ НИУ ВШЭ, тел.: 8(905) 580-44-96 e-mail: borisov@itac.miem.edu.ru

A.S. Malina, N.I. Borisov

DEVELOPMENT OF METHODS TO DETERMINE THE FREQUENCY OF LINEAR ELECTRICAL PROPERTIES OF EQUIVALENT CIRCUITS USING MACROMODELLING

The method of reduction of linear electric equivalent schemes is considered in this article. This method uses the property of the scheme which consists of subciihemes with minimum connections. The macromodeling method is suggested to use for each subciiheme. The macromodeling method allows excluding unimportant inner variables so the common count of equations will be essentially decreased. Thus suggested method allows increasing the speed of computing frequency characteristics and eigen values with minimum accuracy loss and also parallel computing can be organized. Analysis of the model, consisting of macro models, made with minimal processing error.

Keyword: linear equivalent schemes, frequency characteristics, macromodeling
References:
8. Borisov N.I. Research and development of methods to reduce the dimension and labor-bone problems of analysis and optimization of linear equivalent electrical circuits based on macromodelling in CAD. / Dissertation for the degree of Doctor of Technical Sciences, Moscow, 1996.

Malina Anna Sergeyevna,
Postgraduate MIEM HSE.
 tel.: 8 (916) 511-54-62
e-mail: malinaannn@yandex.ru

Borisov Nikolai Ivanovich,
Dr. Sc., Professor of Department ITAS
MIEM HSE.
tel.: 8 (905) 580-44-96
e-mail: borisov@itas.miemy.edu.ru

УВАЖАЕМЫЕ ЧИТАТЕЛИ!
Напоминаем вам, что продолжается подписка на журнал
КАЧЕСТВО. ИННОВАЦИИ. ОБРАЗОВАНИЕ
Подписку вы можете оформить:
● через отделения связи
кatalog Агентства «Роспечать» - индекс 80620, 80621
каталог «Пресса России» - индекс 14490
● через редакцию
Дополнительную информацию можно получить
по телефону: +7 (495) 916 89 29

УВАЖАЕМЫЕ АВТОРЫ!
ОБРАТИТЕ ВНИМАНИЕ, ЧТО ЯВЛЯЕМСЯ ПОДПИСЧИКОМ НАШЕГО ЖУРНАЛА,
ВЫ УСКОРИТЕ ПУБЛИКАЦИЮ СВОЕГО МАТЕРИАЛА.