коррекции отходов растительных масел, а в качестве растворителя — отработанных минеральных масел. Нами в МГУ/Ла разработаны консервационные составы с низкой себестоимостью, обеспечивающие необходимую долговечность. В качестве сырья использовались отходы растительных масел и отработанные минеральные масла (моторные или трансформаторные).

Литература

2. Черновикова В.И., Северный А.В., Заварин А.Н. и др. Сбережение и сокращение антикоррозионных захлопок в сельском хозяйстве. // Л. ГОСНИТИ. 2010. 30 с.

Методы В.В.

Московский государственный институт электроники и математики, г. Москва, Россия

АВТОМАТИЗАЦИЯ ИССЛЕДОВАНИЙ БЕЗОПАСНОСТИ ИСТОЧНИКОВ ВТОРИЧНОГО ЭЛЕКТРОПРОИЗВОДСТВА

Среди всех этапов жизненного цикла источников вторичного электропроизводства (ИВП) особую роль играет этап проектирования, на котором формируется техническое задание на разработку проекта, которое включает в себя решение следующих задач:

1. Определение основных параметров ИВП.
2. Выбор оптимального варианта ИВП.
3. Проведение расчетов по обеспечению безопасности и экологичности работы ИВП.

В соответствии с требованиями [1] расчеты надежности рекомендуется проводить методом цикловых рисков.

- Предварительный (по усредненным данным об интенсивности отказов электрооборудования (ИЭО))
- Схематический (по математическим моделям интенсивности отказов: СЭО, учитывающих их режимы работы).
- Теоретический (по заданным, приведенным в нормах рабочих режимов (КРР)).

Что касается выбора метода расчета, то целесообразно его проведения для ИВП весьма ограниченным, т.к. усредненные значения интенсивности не гарантируют точность оценки низких уровней надежности. А возможность достижения требуемого уровня можно оценить путем анализа данных об аналогах. Что касается схематического расчета надежности, то здесь ситуация более сложная.

Действительно, если подходить формально, то этот расчет можно проводить (и проводят) после выпуска КРР [4], т.е. основные условия разработки концептурной документации — КД. Такой подход может привести к тому, что расчетные значения показателей надежности окажутся ниже требуемых, а, следовательно, и необходимости внесения изменений в готовый проект. Очевидно, что в этом случае критерием выбора целесообразности внесения тех или иных изменений будет уже не их эффективность с точки зрения надежности, а минимум стоимости и сроков выполнения работ.

Если принять во внимание, что расчет надежности должен проводить специалисты службы качества, то в качестве вторичных факторов, значимых при принятии решений, могут быть включены следующие:

- Качество и надежность используемого оборудования;
- Количество и качество используемого контроля;
- Количество и качество используемого контроля;
- Качество и надежность используемого оборудования;
- Количество и качество используемого контроля;

где: \(\lambda_i \) — интенсивность отказов 1-го комплектующего элемента; \(N \) — количество комплектующих элементов в ИВП; \(P(t) \) — вероятность безотказной работы ИВП рассчитывается по формуле:

\[
P(t) = e^{-\lambda t^{N}},\]

где: \(t \) — время работы.

Значения \(\lambda \) рассчитываются по модели, приведенной в соответствующих справочниках. Так, например, для трансформатора T1 типа ТРФВС90 в справочнике [5] приведена следующая математическая модель эксплуатационной интенсивности отказов:

\[
\lambda_y = \lambda_{ха} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_6 \]

где: \(\lambda_{ха} \) — базовая интенсивность отказов; \(K_1 \) — коэффициент, зависящий от величины температуры (электрической нагрузки); \(K_2 \) — коэффициент, зависящий от функционального назначения прибора; \(K_3 \) — коэффициент, зависящий от максимальной допустимой нагрузки на выводах (токи); \(K_4 \) — коэффициент, зависящий от степени жесткости требований к контролю качества и правильности сопряжения изоляции; \(K_5 \) — коэффициент, зависящий от степени жесткости условий эксплуатации.
Значения λ_1, λ_2, λ_3, λ_4, рассчитываются по данным о режиме работы (см. справочник [5]), т.е. λ_4 зависит от режимов работы ЭРИ. Поэтому прежде чем рассчитывать λ, необходимо определить электрические и тепловые режимы работы ЭРИ.

Рассчитать электрические режимы работы (токи, напряжения, мощности) можно с помощью программы моделирования электрических процессов. В качестве примера, на рисунке 2 приведена модель этого преобразователя в системе Micro-CAP v.8 [6].

Расчеты этой модели позволяют оценить работоспособность схемы (см. рисунок 3).

После чего можно перейти к оценке электрических режимов работы ЭРИ. На рисунке 4 приведена схема полубезопасная тока стоков транзистора VT1.

Необходимым для расчета надежности численных значений электрических режимов работы ЭРИ является получение с помощью автоматизированных систем формирования КРР. Однако применение в настояющем времени систем позволяет автоматизировать лишь заполнение графы "По МТД" [6], поэтому при использовании таких систем расчет электрических режимов приходится проводить по методикам стандартов [7] "вручную".

Полученные в результате расчетов мощности ЭРИ используются для моделирования тепловых режимов. Рабочие температуры ЭРИ можно рассчитать с помощью конструкторских САПР (Altium designer, Proteus и др. [8]), если они позволяют провести анализ тепловых режимов, так и специализированных АСИП (например, подсистема АСО-НИИА-ПУ [6]). На рисунке 5 приведено тепловое поле печатного узла, а на рисунке 6 изображен фрагмент файла-отчета подсистемы с температурами ЭРИ.
Рисунок 3 Микро-CAP v.9: Осциллютограммы тока и напряжения на нагрузке ИВЗП.

Рисунок 4 Микро-CAP v.9: Осциллютограмма тока стока транзистора V7.

Рисунок 5 Подсистема АСОИХА-ТИ: тепловое поле печатного узла.
После расчетов электрических и тепловых режимов работы ЭРИ можно перейти к расчетам показателей СЦ. Эти расчеты также автоматизированы, однако, отечественные программы не так много [8]. На рисунке 7 приведены результаты расчета показателей СЦ, выполненного с помощью системы SONYKA-K-СВ [6, 9].

В заключении следует отметить, что достигнутый в настоящее время уровень автоматизации проектных исследований надежности и электрических режимов ИВЗ достаточно высок. Однако даже, а именно получение электрических режимов работы ЭРИ, даже при использовании программных средств может потребовать значительных затрат.

Тем не менее, использование САПР и АСПИ позволяет провести всестороннее исследование не только схем и конструкций ИВЗ, но и их характеристик надежности, на практике реализовать информационную технологию обеспечения надежности сложных электротехнических средств [3], что позволяет повысить показатели качества и обеспечить конкурентоспособность вновь разрабатываемых и модернизируемых ИВЗ.

ЛИТЕРАТУРА

1. ОСТ 45 0 0012.242-84. Аппаратура радиоэлектронная. Методика расчета показателей надежности.
2. НКС 319.01.20-98. Положение о справочнике «Надежность радиоэлектронной аппаратуры».
3. ГОСТ 72.200-95. Режим надежности. Основные положения.
7. ПДВ 319.01.09-94 (ред. 2-2000). КСКУ. Руководство по оценке правильности применения электротехнических средств.