International Conference-School

"Infinite-dimensional dynamics, dissipative systems, and attractors"

Lobachevsky State University of Nizhny Novgorod, July 13-17, 2015

SEMILINEAR PARABOLIC EQUATIONS WITHOUT INERTIAL MANIFOLD

A.V. Romanov

National Research University Higher School of Economics e-mail: av.romanov@hse.ru

OUTLINE OF THE TALK

- ▲ Semilinear parabolic equations
- ▲ Inertial manifolds of parabolic equations
- ▲ Sufficient conditions for the existence of an inertial manifold
- ▲ Necessary condition for the existence of an inertial manifold
- ▲ Equation with nonlocal diffusion without an inertial manifold
- ▲ Normally hyperbolic inertial manifolds
- Reaction-diffusion system without a normally hyperbolic inertial manifold
- ▲ Inertial manifold without normal hyperbolicity
- ▲ Absolutely normally hyperbolic inertial manifolds

OBJECT OF STUDY

In a real separable Hilbert space $(X, \|\cdot\|)$, dim $X = \infty$, consider the semilinear parabolic equation

$$u_t = -Au + F(u) \tag{(*)}$$

Here

- 1. $A: D(A) \to X$ is a linear self-adjoint positive operator with compact inverse A^{-1} .
- 2. $F: H \to X$ is a smooth nonlinear function with domain $H = D(A^{\theta}), \ 0 \le \theta < 1, \ ||u||_{H} = ||A^{\theta}u||,$ $||F(u) - F(v)|| \le K(r)||u - v||_{H}$ for $||u||_{H} \le r, ||v||_{H} \le r.$
- 3. There exists a smooth dissipative phase semiflow $\Phi_t: H \to H$.

The dissipativity means the existence of an **absorbing ball** in the phase space H. Since the **nonlinearity exponent** $\theta < 1$, we see that the function F is "weaker" than the operator A, which means that Eq. (*) is **semilinear**. We have H = X if $\theta = 0$.

Nonlinearities $F: H \to X$ with the properties described above will be called **admissible** nonlinearities. The **compact attractor** $\mathcal{A} \subset H$ is the collection of all complete bounded trajectories.

INERTIAL MANIFOLDS OF PARABOLIC EQUATIONS

The inertial manifold of the semilinear parabolic equation (*) is a smooth finite-dimensional invariant surface $M \subset H$ that contains the global attractor and attracts all trajectories at large time with exponential tracking. Usually, M have globally Cartesian structure and M is diffeomorphic to \mathbb{R}^n . The restriction of the parabolic equation to M is an ordinary differential equation (inertial form) in \mathbb{R}^n which completely describes the eventual dynamics of the system.

The existence of an inertial manifold implies that the eventual behavior of an infinite-dimensional dynamical system is controlled by **finitely many** parameters.

CONCLUSION: a system with infinitely many degrees of freedom essentially has finitely many degrees of freedom as $t \rightarrow +\infty$.

HISTORY OF THE TOPIC

The term "inertial manifold" was introduced in the note [1]. Essentially, this object had already been considered in [2,3]. Mane's paper [4] is apparently the first study on the topic. The contemporary state of the topic: [5].

PARADOX: Nothing is known about inertial manifolds for a majority of equations of mathematical physics.

Namely, it has been possible to establish the existence of inertial manifolds for a narrow class of parabolic equations, while known examples [6,7] in which there is no inertial manifold seem to be artificial and are not related to practically important problems.

- [1] C. Foias, G.R. Sell, and R. Temam. C. R. Acad. Sci. Paris I, 301:5 (1985), 139–141.
- [2] D. Henry. *Geometric theory of semilinear parabolic equations*, Lecture Notes in Math., 840, 1981.
- [3] X. Mora. Contemp. Math., **17** (1983), 353–360.
- [4] R. Mane. Lecture Notes in Math., **597**, 1977, 361–378.
- [5] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245–1327.
- [6] A.V. Romanov. Math. Notes, 68:3–4 (2000), 378–385.
- [7] A. Eden, V. Kalantarov, and S. Zelik. *Russian Math. Surveys*, **68**:2 (2013), 99–226. ⁵

The main goal of the study is to construct examples of parabolic equations of mathematical physics that do not have an inertial manifold

INERTIAL MANIFOLDS: SUFFICIENCY

The only general sufficient condition for the existence of an inertial manifold $M \subset H$ of the equation $u_t = -Au + F(u)$ for an arbitrary admissible nonlinearity F is the spectrum sparseness condition for the linear part of the equation (e.g., see [1]):

$$\sup_{n \ge 1} \frac{\mu_{n+1} - \mu_n}{\mu_{n+1}^{\theta} + \mu_n^{\theta}} = \infty, \text{ where } \{0 < \mu_1 \le \mu_2 < ...\} = \sigma(A).$$

For the **reaction-diffusion equation**

$$\partial_t u = \Delta u + f(x, u)$$

in a bounded domain $\Omega \subset \mathbb{R}^m$, one has $A = -\Delta$, $\theta = 0$, $\mu_n \sim cn^{2/m}$, so that the spectrum sparseness condition $\sup_{n \ge 1} (\mu_{n+1} - \mu_n) = \infty$ holds only in one-dimensional and (rarely) two-

dimensional problems.

For the Beltrami–Laplace operator on the sphere S^m the spectrum sparseness condition $\sup_{n\geq 1} (\mu_{n+1} - \mu_n) = \infty$ holds $\forall m \geq 2$!

[1] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245-1327.

HOW CAN WE AVOID THE SPECTRUM SPARSENESS CONDITION ?

The **spatial averaging principle** for the Laplacian Δ in bounded domain $\Omega \subset \mathbb{R}^m$ $(m \leq 3)$ suggested in [1] sometimes permits one to construct inertial manifolds **avoiding the spectrum sparseness condition**. It is the following property: for $\forall h \in H^2(\Omega)$ operator $\Delta + h(x)$ can be well approximated by $\Delta + \overline{h}$ over "large segments" of $L^2(\Omega)$, where $\overline{h} = (\operatorname{vol} \Omega)^{-1} \int_{\Omega} h(x) dx$. This property follows from the spectrum sparseness condition. The corresponding method was used in [1] to prove the existence of an inertial manifold for the scalar reaction-diffusion equation

$$\partial_t u = \Delta u + f(x, u), \qquad f \in C^3,$$

in cube $\Omega = (0, 2\pi)^3$ and in rectangle $\Omega = (0, a) \times (0, b)$ with boundary conditions (N), (D) or (P). Analogical results were obtained [2] for some bounded domains $\Omega \subset \mathbb{R}^m$ (m = 2, 3). The abstract scheme of this method was suggested in [3] and successfully applied in [4] to the Cahn–Hilliard equation

$$\partial_t u = -\Delta(\Delta u - f(u)), \quad f \in C^3,$$

on the 3D torus.

- [1] J. Mallet-Paret and G.R. Sell. J. Amer. Math. Soc., 1:4 (1988), 805–866.
- [2] H. Kwean. Int. J. Math. Math. Sci., 28:5 (2001), 293–299.
- [3] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245–1327.
- [4] A. Kostianko and S. Zelik. Comm. Pure Appl. Anal., 14:5 (2015), 2069–2094.

TRANSFORMATION OF THE EQUATION

The other way to avoid the spectrum sparseness condition is to transform (*some change of variables*) the parabolic equation in order **to decrease** the nonlinearity exponent θ . **The summetry property of the linear part of the equation must be preserved.** In this way J. Vukadinovic has constructed inertial manifolds [1, 2] for a Smoluchowski equation – a nonlinear Fokker–Planck equation on S^m (m = 1,2) and [3] for a class of diffusive Burgers equations on torus $[0, 2\pi]^m$ (m = 1,2). In paper [3] the Cole–Hopf transform has been employed.

But the last two methods are not being general. We can avoid the spectrum sparseness condition in some special cases only.

[1] J. Vukadinovic. *Nonlinearity*, **21** (2008), 1533–1545.

- [2] J. Vukadinovic. Comm. Math. Phys., 285:3 (2009), 975–990.
- [3] J. Vukadinovic. Discr. Cont. Dyn. Syst., 29:1 (2011), 327–341.

INERTIAL MANIFOLDS: NECESSITY

For a *fixed* admissible nonlinearity *F*, there is only one known necessary condition [1, 2] for the existence of an inertial manifold $M \subset H$ for the equation $u_t = -Au + F(u)$. For $u \in H$, we introduce the following notation:

- 1. F'(u) is the Fréchet or Gâteaux derivative of the function F.
- 2. $\sigma(S_u)$ is the spectrum of the linear operator $S_u = F'(u) A$ with compact resolvent.
- 3. *E* is the set of stationary points u: -Au + F(u) = 0.
- 4. $l(u) < \infty$ is the number (counting algebraic multiplicity) of eigenvalues $\lambda > 0$ in $\sigma(S_u)$ for $u \in E$.

5.
$$E_{-} = \{ u \in E : \sigma(S_u) \cap (-\infty, 0] = \phi \}.$$

NECESSITY LEMMA [1]. If the equation $u_t = -Au + F(u)$ admits an inertial manifold $M \subset H$, then the number $l(u_1) - l(u_2)$ is even for any two points $u_1, u_2 \in E_-$.

Sketch of proof. Let $Y = T_u M$ be the tangent space to M at a point $u \in E_-$, then $S_u Y \subset Y_-$. As $M \supset \text{attractor}$, then $\sigma(S_u|_Y)$ contains exactly l(u) real values. Since dim Y = dim M, it follows that the number dim M - l(u) is even for any $u \in E_-$.

[1] A.V. Romanov. *Math. Notes*, **68**:3–4 (2000), 378–385.
[2] A. Eden, V. Kalantarov, and S. Zelik. *Russian Math. Surveys*, **68**:2 (2013), 199–226.

EQUATION WITH NONLOCAL DIFFUSION WITHOUT AN INERTIAL MANIFOLD

Consider the integro-differential parabolic equation

$$u_t = ((I + B)u_x)_x + f(x, u, u_x)$$
(*)

on the unit circle Γ . Here $X = L^2(\Gamma)$, I = id, $x \in \Gamma$, $f : \Gamma \times \mathbb{R}^2 \to \mathbb{R}$, and

$$(Bh)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \ln \left| \sin \frac{x+y}{2} \right| h(y) dy \quad (h \in X).$$

The self-adjoint operator $I + B \ge 0$ plays the role of a nonlocal degenerate diffusion coefficient, and $\partial_x B = J$, where $(Jh)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cot \frac{x+y}{2} h(y) dy$ is a slightly modified Hilbert integral operator.

THEOREM [1]. For an appropriate choice of the function $f \in C^{\infty}$, Eq. (*) generates a smooth dissipative semiflow in $H = D(A^{\theta})$, $3/4 < \theta < 1$, and does not admit an inertial manifold $M \subset H$.

[1] A.V. Romanov. *Math. Notes*, **96**:4 (2014), 548–555.

EQUATION WITH NONLOCAL DIFFUSION WITHOUT AN INERTIAL MANIFOLD – 1

In the course of proof, we use the properties of a Hilbert integral operator [1] and the perturbation theory technique [2] to construct a function f(x, s, p) such that Eq. (*) has stationary solutions $u_1 = 0, u_2 = 1, u_1, u_2 \in E_-$, with $l(u_1) = 0, l(u_2) = 1$. Then we apply the **necessity lemma.**

This example of a parabolic equation without an inertial manifold is much more realistic than the earlier-known examples but still is not completely natural.

[1] P.P. Zabreiko, et al. *Integral Equations. A Reference Text.* 1975.[2] T. Kato. *Perturbation Theory for Linear Operators*, 1966.

NORMALLY HYPERBOLIC INERTIAL MANIFOLDS

For inertial manifolds with additional **normal hyperbolicity properties** [1], nonexistence examples can be constructed in the class of **reaction–diffusion systems**.

DEFINITION. An inertial manifold $M \subset H$ of the equation $u_t = -Au + F(u), H = D(A^{\theta})$, is said to be *normally hyperbolic* if, for some (invariant with respect to the derivative Φ'_t of semiflow $\Phi_t : H \to H$) vector bundle $T_M H = TM \oplus N$, where TM is the tangent bundle of M, one has (for $t \ge 0$) the estimates

$$\begin{split} \left\| \Phi_{t}'(u)\xi \right\|_{H} &\geq C^{-1}e^{-\gamma_{1}t} \left\| \xi \right\|_{H} \quad (\xi \in T_{u}M), \\ \left\| \Phi_{t}'(u)\xi \right\|_{H} &\leq Ce^{-\gamma_{2}t} \left\| \xi \right\|_{H} \quad (\xi \in N_{u}) \end{split}$$
(*)

for $u \in M$ with constants $C \ge 1$ and $0 < \gamma_1 < \gamma_2$ depending on M and u.

THE SENSE: the linearized semiflow contracts *N* more sharply then *TM*.

It is well known [1, 2] that normally hyperbolic invariant manifolds of dynamical systems are **structurally stable**.

[1] M. Hirsch, G. Pugh, and M. Shub. *Invariant manifolds*, Lecture Notes in Math., **583**, 1977.
[2] V.A. Pliss and G.R. Sell. *J. Diff. Equat.*, **169**, (2001) 396–492.

NORMALLY HYPERBOLIC INERTIAL MANIFOLDS: SUFFICIENCY

If C, γ_1, γ_2 in relations (*) are independent of u, then we say that the manifold M is absolutely normally hyperbolic. If relations (*) hold for $u \in E$, then we say that M is hyperbolic at the stationary points.

THEOREM [1]. The spectral sparseness condition

$$\sup_{n \ge 1} \frac{\mu_{n+1} - \mu_n}{\mu_{n+1}^{\theta} + \mu_n^{\theta}} = \infty, \text{ where } \{0 < \mu_1 < \mu_2 < ...\} = \sigma(A),$$

for the semilinear parabolic equation

$$u_t = -Au + F(u) \tag{**}$$

with the nonlinearity exponent $\theta \in [0,1)$ in Hilbert space X implies the existence of an absolutely normally hyperbolic inertial manifold M in the phase space $H = D(A^{\theta})$.

THEOREM [2]. The scalar reaction-diffusion equation $\partial_t u = \Delta u + f(x,u)$, $f \in C^3$, in cube $\Omega = (0, 2\pi)^3$ and in rectangle $\Omega = (0, a) \times (0, b)$ with boundary conditions (N),(D) or (P) has normally hyperbolic at the stationary points inertial manifold $M \subset L^2(\Omega)$.

RECENTLY [3]: the spatial averaging principle (abstract scheme) for Eq. (**) implies the existence of an normally hyperbolic inertial manifold in the phase space.

[1] R. Rosa, R. Temam. ACTA Applicandae Mathematicae, 45 (1996), 1–50.

[2] J. Mallet-Paret, G.R. Sell, and Z. Shao. Indiana Univ. Math. J., 42:3 (1993), 1027–1055.

[3] A. Kostianko and S. Zelik. Comm. Pure Appl. Anal., 14:5 (2015), 2069–2094.

NORMALLY HYPERBOLIC INERTIAL MANIFOLDS: NECESSITY

Let $M \subset H$ be an inertial manifold of the equation $u_t = -Au + F(u)$, let $\gamma \in \mathbb{R}$, and let $H(u, \gamma)$ be the finite-dimensional invariant subspace of the operator $S_u = F'(u) - A$ corresponding to the part of the spectrum $\sigma(S_u)$ with Re $\lambda \ge \gamma$.

NECESSITY LEMMA [1]. If M is normally hyperbolic on E, then

 $\forall u \in E \; \exists \gamma = \gamma(u) < 0 : \dim H(u, \gamma) = \dim M.$

Here $\gamma(u) = -(\gamma_1(u) + \gamma_2(u))/2$, the invariant subspaces $T_u M$ and N_u correspond to the parts of $\sigma(S_u)$ with $\operatorname{Re} \lambda \ge -\gamma_1(u)$ and $\operatorname{Re} \lambda \le -\gamma_2(u)$, respectively, and $0 < \gamma_1(u) < \gamma_2(u)$ in the definition of normal hyperbolicity. If *M* is *absolutely normally hyperbolic*, then the constants $\gamma, \gamma_1, \gamma_2$ are independent of $u \in M$.

THEOREM [1]. *There exists a real-analytic function* f such that the reaction–diffusion equation

$$\partial_t u = \Delta u + f(x, u), \quad \Omega = (0, \pi)^4, \ \partial_n u \Big|_{\partial \Omega} = 0$$

dissipative in $H = L^2(\Omega)$, does not admit a normally hyperbolic inertial manifold $M \subset H$.

The proof is based on the **necessity lemma** and uses the large multiplicity of the spectrum $\sigma(-\Delta)$ in $(0,\pi)^4$. The corresponding function $f:(0,\pi)^4 \times \mathbb{R} \to \mathbb{R}$ (polynomial in *u*) is not constructed explicitly. [1] J. Mallet-Paret, G.R. Sell, and Z. Shao. *Indiana Univ. Math. J.*, **42**:3 (1993), 1027–1055. 15

PROBLEM:

Find 3D reaction-diffusion equations with polynomial nonlinearity of degree \leq 3 that do not admit a normally hyperbolic inertial manifold

The restrictions on the dimension of the problem and the form of the nonlinearity are typical of the equations of chemical kinetics.

3D REACTION-DIFFUSION SYSTEMS

Consider the system of equations

$$\partial_t u_1 = \Delta u_1 + f_1(u_1, u_2), \quad \partial_t u_2 = \Delta u_2 + f_2(u_1, u_2), \quad (*)$$

dissipative in $H = (L^2(\Omega))^2$, $\Omega = (0,\pi)^3$, with the condition $\partial_n u|_{\partial\Omega} = 0$ and with a smooth function $f: \mathbb{R}^2 \to \mathbb{R}^2$. For a stationary point $p \in \mathbb{R}^2$ of the vector field f, we set $\delta(p) = |\operatorname{Re}(\kappa_1 - \kappa_2)|$, where κ_1, κ_2 are the eigenvalues of the Jacobian matrix f'(p). Note that $\delta(p) = 0$ for multiple or complex κ . The scalar operator $-\Delta$ has (for $x = (x_1, x_2, x_3) \in \Omega$) the eigenfunctions $\varphi(x) = \prod_{k=1}^3 \cos l_k x_k$ ($l_k \in \mathbb{N} \cup 0$) and the eigenvalues $\mu_n = l_1^2 + l_2^2 + l_3^2 \quad \forall l_j \in \mathbb{Z}$ } with multiplicity ν_n . It is well known [2] that $1 \le \mu_{n+1} - \mu_n \le 3$. One has the orthogonal decomposition

$$H = \sum_{n=0}^{\infty} \oplus H_n, \quad \Delta H_n = -\mu_n H_n, \quad \dim H_n = 2\nu_n.$$

OBSTRUCTION LEMMA [1]. Assume that the vector field $f = (f_1, f_2)$ has four stationary points $p_j \in \mathbb{R}^2$ (j = 0, 1, 2, 3) with $\delta(p_j) = j$. Then system (*) does not have a normally hyperbolic inertial manifold $M \subset H$.

[1] A.V. Romanov. Math. Notes, 68:3-4 (2000), 378-385.

[2] G.H. Hardy, E.M. Wright. An introduction to the theory of numbers, 1979.

SKETCH OF PROOF

We have
$$\sigma(f'(p_0)) = s_0 \pm i\omega \ (s_0 \in \mathbb{R}, \omega \ge 0),$$
$$\sigma(f'(p_j)) = s_j \pm j/2 \ (1 \le j \le 3, \ s_j \in \mathbb{R}).$$

Subspaces H_n are invariant for the operators $S_j = \Delta + f'(p_j), 0 \le j \le 3$. The spectrum $\sigma(S_j)$ is the union over of $n \ge 0$ the spectra of all (2×2) -matrices $-\mu_n I + f'(p_j)$ (I = id):

$$\begin{aligned} \sigma(S_0) &= \{-\mu_n + s_0 \pm i\omega\}_{n \ge 0}, \quad \sigma(S_1) = \{-\mu_n + s_1 \pm 1/2\}_{n \ge 0}, \\ \sigma(S_2) &= \{-\mu_n + s_2 \pm 1\}_{n \ge 0}, \quad \sigma(S_3) = \{-\mu_n + s_3 \pm 3/2\}_{n \ge 0}. \end{aligned}$$
Let $\chi(0, m) = \operatorname{card} \{\lambda \in \sigma(S_0): \operatorname{Re} \lambda \ge -\mu_m + s_0\}, \\ \chi(j, n) &= \operatorname{card} \{\lambda \in \sigma(S_j): \lambda \ge -\mu_n + s_j - j/2\}, \\ \psi(j, n) &= \operatorname{card} \{\lambda \in \sigma(S_j): \lambda \ge -\mu_n + s_j + j/2\}, \end{aligned}$

where $m, n \ge 0, 1 \le j \le 3$, and **points of the spectrum are counted with multiplicities.** Accordingly **necessity lemma** it is sufficiently to refute the conjecture:

$$\exists m, n_j \ge 0 \ (1 \le j \le 3) \ \forall j : \chi(0,m) = \chi(j,n_j) \text{ or } \chi(0,m) = \psi(j,n_j).$$

It may be done by arithmetical analysis of many variants.

EXAMPLE OF NONEXISTENCE OF A NORMALLY HYPERBOLIC INERTIAL MANIFOLD

Consider the system

$$\partial_t u_1 = \Delta u_1 + f_1(u_1, u_2), \quad \partial_t u_2 = \Delta u_2 + f_2(u_1, u_2)$$

in cube $\Omega = (0, \pi)^3$, under the condition $\partial_n u \Big|_{\partial \Omega} = 0$ with the polynomial vector field

$$f_1(v_1, v_2) = kv_1(1 - av_1^2 + v_2^2), \quad f_2(v_1, v_2) = kv_2(1 - bv_2^2 - v_1^2),$$

where a > 1, k, b > 0, are constants. Dissipativity in $H = (L^2(\Omega))^2$ ("vector sign condition"): squares $|v_1| < R$, $|v_2| < R$ are positively invariant for ODE $v_t = f(v)$ when $R \ge R_0 > 0$.

PROPOSITION [1]. There exist k,a,b such that this system does not have a normally hyperbolic inertial manifold $M \subset H$.

[1] A.V. Romanov (unpublished).

SKETCH OF PROOF

Let us single out four stationary points

$$p_0 = (0,0), \quad p_1 = (a^{-1/2},0), \quad p_2 = \left(\left(\frac{b+1}{ab+1} \right)^{1/2}, \left(\frac{a-1}{ab+1} \right)^{1/2} \right), \quad p_3 = (0,b^{-1/2})$$

of the vector field $f : \mathbb{R}^2 \to \mathbb{R}^2$. We have

$$f'(v) = k \begin{pmatrix} 1 - 3av_1^2 + v_2^2 & 2v_1v_2 \\ -2v_1v_2 & 1 - v_1^2 - 3bv_2^2 \end{pmatrix}$$

for $v \in \mathbb{R}^2$, and $\delta_0 = 0$, $\delta_1 = k(3 - a^{-1})$, $\delta_3 = k(3 + b^{-1})$,

$$\delta_2^2 = \frac{4k^2a^2}{(ab+1)^2} - 16k^2 \frac{(a-1)(b+1)}{(ab+1)^2},$$

if the right part >0 (otherwise $\delta_2 = 0$). We have $\delta_3/\delta_1 = 3$, if b = a/(6a-3). Let $g(a) = \delta_2(a)/\delta_1(a)$, then $g \in C[1,\infty)$, g(1) = 3/4, $g(\infty) = 4$ and so g(a) = 2 for some a > 1. Let now k = a/(3a-1), then we see that $\delta(p_j) = j$ ($0 \le j \le 3$).

The proposition follows now from the **obstruction lemma**.

PROBLEM:

Find 3D reaction-diffusion equations with an inertial manifold that is not normally hyperbolic

INERTIAL MANIFOLD THAT IS NOT NORMALLY HYPERBOLIC

Consider the system

$$\partial_t u_1 = \Delta u_1 + f_1(u_1, u_2), \quad \partial_t u_2 = \Delta u_2 + f_2(u_1, u_2), \quad (*)$$

dissipative in $H = (L^2(\Omega))^2$, $\Omega = (0, \pi)^3$, with the boundary condition $\partial_n u \Big|_{\partial \Omega} = 0$ and

with the polynomial vector field

$$f_1(v_1, v_2) = v_1(a - v_1)(v_1 - b), \quad f_2(v_1, v_2) = v_2(c - v_2)(v_2 - d),$$

where a, b, c, d are constants. THIS IS AN UNCOUPLED SYSTEM!

PROPOSITION [1]. For $a = 2, b = \sqrt{3}, c = \sqrt{6}, d = \sqrt{2}$, system (*) has an inertial manifold $M \subset H$ but does not have a normally hyperbolic inertial manifold in H.

Thus, we have presented an inertial manifold of system (*) without the normal hyperbolicity property.

[1] A.V. Romanov (unpublished).

PROOF

By [1], each of the two equations in the system has an inertial manifold $M_j \subset L^2(\Omega)$ with Cartesian structure, and hence $M = M_1 \times M_2$ is an inertial manifold of the system in H. At the stationary points

$$p_0 = (0,0), \quad p_1 = (b,d), \quad p_2 = (a,c), \quad p_3 = (b,c)$$

of the vector field $f : \mathbb{R}^2 \to \mathbb{R}^2$, we have

$$\begin{aligned} f'(p_0) &= \begin{pmatrix} -ab & 0 \\ 0 & -cd \end{pmatrix} = \begin{pmatrix} -2\sqrt{3} & 0 \\ 0 & -2\sqrt{3} \end{pmatrix}, \\ f'(p_1) &= \begin{pmatrix} b(a-b) & 0 \\ 0 & d(c-d) \end{pmatrix} = \begin{pmatrix} 2\sqrt{3}-3 & 0 \\ 0 & 2\sqrt{3}-2 \end{pmatrix}, \\ f'(p_2) &= \begin{pmatrix} a(b-a) & 0 \\ 0 & c(d-c) \end{pmatrix} = \begin{pmatrix} 2\sqrt{3}-4 & 0 \\ 0 & 2\sqrt{3}-6 \end{pmatrix}, \\ f'(p_2) &= \begin{pmatrix} b(a-b) & 0 \\ 0 & c(d-c) \end{pmatrix} = \begin{pmatrix} 2\sqrt{3}-3 & 0 \\ 0 & 2\sqrt{3}-6 \end{pmatrix}. \end{aligned}$$

We see that $\delta(p_j) = j \ (0 \le j \le 3)$, and the desired assertion follows from the **obstruction lemma.**

[1] J. Mallet-Paret and G.R. Sell. J. Amer. Math. Soc., 1:4 (1988), 805–866.

IS THE SPECTRUM SPARSENESS CONDITION EQUIVALENT TO THE ABSOLUTELY NORMALLY HYPERBOLIC INERTIAL MANIFOLD EXISTING ?

ABSOLUTELY NORMALLY HYPERBOLIC INERTIAL MANIFOLDS

Let us discuss the existence of such manifolds for the semilinear parabolic equation

$$u_t = -Au + F(u) \tag{(*)}$$

in Hilbert space X with the phase space $H = D(A^{\theta}), 0 \le \theta < 1$.

PROBLEM. Find a relationship between the following properties:

(A) The spectrum sparseness condition for the linear part Eq. (*):

$$\sup_{n \ge 1} \frac{\mu_{n+1} - \mu_n}{\mu_{n+1}^{\theta} + \mu_n^{\theta}} = \infty, \text{ where } \{0 < \mu_1 < \mu_2 < ...\} = \sigma(A);$$

- (B) For any admissible nonlinearity F, Eq. (*) has an absolutely normally hyperbolic inertial manifold $M \subset H$.
- (C) For any admissible nonlinearity F, Eq. (*) has an inertial manifold $M \subset H$ absolutely normally hyperbolic at the stationary points.
- (D) For any admissible nonlinearity F, Eq. (*) has an inertial manifold $M \subset H$.

PROPOSITION. Properties (A), (B), (C) and (D) are equivalent.

The implication (A) \Rightarrow (B) is known [1] and the implications (B) \Rightarrow (C), (C) \Rightarrow (D) are trivial. The implication (D) \Rightarrow (A) has been obtained in [2].

[1] R. Rosa, R. Temam. ACTA Applicandae Mathematicae, 45 (1996), 1–50.
[2] A. Eden, V. Kalantarov, and S. Zelik. *Russian Math. Surveys*, 68:2 (2013), 99–226.

THE PARTICULAR CASE

One has slightly other picture for special classes of semilinear parabolic equations. Let us consider the scalar reaction–diffusion equation

$$\partial_t u = \Delta u + \eta f(u), \quad \eta > 0, \tag{(*)}$$

in a bounded domain $\Omega \subset \mathbb{R}^m$ $(m \le 3)$ with the condition $\partial_n u \Big|_{\partial\Omega} = 0$ and with a smooth function f. We assume that Eq. (*) is dissipative in $H = L^2(\Omega)$. Let $\{0 \le \mu_1 < \mu_2 < ...\} = \sigma(-\Delta).$

PROPOSITION [1]. Let $\mu_{n+1} - \mu_n \leq K$, $n \geq 0$, and $f'(p_0) - f'(p_1) = a > 0$ for some $p_0, p_1 \in \mathbb{R}$, $f(p_0) = f(p_1) = 0$. Then Eq. (*) with $\eta > K/a$ have no inertial manifold $M \subset H$ absolutely normally hyperbolic at the stationary points.

For Eq. (*) we can affirm the equivalence of properties (A), (B), (C) only. [1] A.V. Romanov. *Math. Notes*, **68**:3–4 (2000), 378–385.

POSSIBLE GOALS

- **1.** Construct an example of a reaction–diffusion system without an inertial manifold.
- 2. Comprehensively study a relationship between the spectrum sparseness condition and absolutely normally hyperbolic inertial manifold existing for semilinear parabolic equations.
- 3. Successfully advancement of the spatial averaging principle (abstract scheme).
- 4. Comprehensively study the topic "inertial manifolds" for **2D** Navier–Stokes equations.
- 5. The study of the topic "inertial manifolds" for reaction-diffusion equations on close manifolds. 27

THANKS FOR ATTENTION