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1 Introduction

When the players of a dynamic game can communicate before the game starts, they

are likely to exploit this opportunity to reach a possibly incomplete agreement1 about

how to play. In most cases, the context allows them to reach only a non-binding

agreement, which cannot be enforced by a court of law. The only way a non-binding

agreement can a¤ect the behavior of players is through the beliefs it is able to induce

in their minds. This paper sheds light on which agreements players can believe

in and, among them, which agreements players will comply with. Moreover, in an

implementation perspective, the paper investigates which outcomes of the game can

be ensured by some agreement. The paper will not deal with the pre-play bargaining

phase. Yet, the evaluation of their credibility has a clear and strong feedback on

which agreements are likely to be reached.

In this paper I take the view that players will believe in the agreement only if this

is compatible with reasonable assumptions about rationality,2 beliefs in rationality

and their interaction with the beliefs in the agreement of all orders. Ann will believe

in the agreement only if Bob may comply with it in case he is rational, he believes in

the agreement, he believes that Ann is rational and believes in the agreement (which

may add non-agreed upon restrictions on what Bob expects Ann to do), and so on.

Moreover, I take the view that deviations, or more generally past actions, are not

interpreted as mistakes but as intentional choices. Suppose that for Bob, in case he

is rational and believes in the agreement, some move makes sense only if he plans to

play a certain action thereafter. Ann, upon observing such move, will believe that

Bob will play that action (and Bob may use the move to signal this). This instance

of forward induction reasoning is based not just on the belief in Bob�s rationality but

also on its interaction with the belief that Bob believes in the agreement. Example 2

in Section 2 provides a case in point. Consider now a move that Bob, if he is rational

and believes in the agreement, cannot �nd pro�table whatever he plays thereafter.

Example 1 in Section 2 provides a situation of this kind. Then Ann cannot mantain

both beliefs that Bob is rational and that he believes in the agreement. Which of the

1The mathematical representation of agreements in this paper can be given also di¤erent inter-
pretations. For instance, the agreement can represent a set of public announcements (from a subset
of players)

2The notion of rationality employed in this paper imposes expected utility maximization but it
does not impose by itself any restriction on beliefs. See Section 3 for details.
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two she will (try to)3 mantain determines the choice of the appropriate rationaliz-

ability concept to capture these lines of strategic reasoning. Strong-�-rationalizability

(Battigalli, [5]; Battigalli and Siniscalchi, [11]) captures the hypothesis that the beliefs

in the agreement are given higher epistemic priority than the beliefs in rationality;

that is, in a contingency which some player would not have allowed under the beliefs

in the agreement and rationality of order, respectively, n and n � 1,4 the co-players
abandon the belief in rationality of order n.5 When instead the co-players want to

retain all orders of belief in rationality that are per se compatible with the observed

behavior and rather drop the orders of belief in the agreement that are at odds with

them, selective rationalizability is the appropriate tool (see Catonini [13]). Since the

agreement originates from just cheap talk among players, I suggest that selective ra-

tionalizability is the appropriate solution concept in most situations. However, for

robustness purposes and theoretical insight, it will be useful to evaluate agreements

with both rationalizability concepts. Strong-�-rationalizability and selective rational-

izability deliver either an empty set (if believing in the agreement is not compatible

with the strategic reasoning hypotheses) or the possible behavioral implications of

the agreement (otherwise). Some behavioral implications of a credible agreement

may be inconsistent with the agreement itself: a player may or may not comply with

the agreement depending on her conjectures where the incomplete agreement and

strategic reasoning do not uniquely pin down the moves of the co-players.6

For notational simplicity and for the proofs of some results, the focus is restricted

to the class of �nite games with complete information and observable actions.7 How-

ever, the methodology can be applied to all dynamic games with a countable set of

non-terminal histories8 and perfect recall, hence possibly in�nite horizon.9 Which

3The observed behavior may contradict also some order of belief in rationality per se.
4For n = 1 I mean rationality itself. The �rst-order-belief in the agreement has bite only when

associated with rationality. Likewise, the belief in the agreement of order n has bite only when
associated with the belief in rationality of order n� 1. See Section 3 for details.

5All the beliefs in the agreement of higher orders can be mantained, since they have no behavioral
consequence without the belief in rationality of the lower order, so they cannot be falsi�ed by
observation. This remark is due to Battigalli and Prestipino [8].

6Or when indi¤erences apply.
7Games where every player always knows the current history of the game, i.e. - allowing for truly

simultaneous moves - information sets are singletons. For instance, all repeated games with perfect
monitoring are games with observable actions.

8The limitation to a countable set of non-terminal histories allows to use Conditional Probability
Systems (see Section 3), which require a countable set of conditioning events.

9Battigalli and Prestipino [8] have the most general analysis of strong-�-rationalizability in �nite
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agreements are credible and will be complied with? Which outcomes of the game can

be achieved through some agreement? To answer these questions, the concepts of

self-enforceability (of agreements) and implementability (of outcomes) are de�ned.

First, a very natural class of agreements is analyzed. A path agreement does

not attempt to prescribe behavior at contingencies that follow a violation of the

agreement itself. Thus, it just corresponds to agreeing on an outcome to be achieved.

Example 2 in Section 2 analyzes a path agreement. Independently of the epistemic

priority hypothesis, only for a strongly rationalizable,10 subgame perfect equilibrium

(henceforth, SPE) outcome, the corresponding path agreement can be self-enforcing,

but (unless it is the only one) not even its credibility is guaranteed.

What about non-subgame perfect equilibrium outcomes? The corresponding path

agreement may be credible too. Moreover, a non subgame perfect equilibrium out-

come may be implementable with appropriate o¤-the-path threats (whereas a SPE

one may not). Example 1 in Section 2 is a case in point. For two-players game, I pro-

vide a full characterization of implementable outcomes: an outcome is implementable

under epistemic priority to rationality (resp., to the agreement) if and only if it is

induced by a "strict"11 equilibrium in strongly rationalizable (resp., sequentially ra-

tional) strategies. The incompleteness of the agreement can be crucial to implement

an equilibrium outcome, also when players are more than two. The last examples of

Section 4.1 and Section 4.2 illustrate how.

At this point, one may wonder whether there always exists (the support of) a SPE

outcome (distribution) that can be implemented by some agreement. The answer is

negative under the assumption that players do not agree on mixed actions. However,

a preliminary investigation in this direction leads to a result of broader interest: in

every game with observable actions, there are always a SPE and an equilibrium in

strongly rationalizable strategies which induce the same distribution over outcomes.12

That is, backward induction (plus equilibrium reasoning)13 and forward induction (as

games: incomplete information, imperfectly observable actions, chance moves. Selective rationaliz-
ability can be extended in the same direction too.
10Strong rationalizability is a modi�cation of Extensive Form Rationalizability (Pearce, [27]),

which Battigalli and Siniscalchi [10] use to characterize the behavioral implications of Rationality
and Common Strong Belief in Rationality.
11 i.e.,without best replies to the equilibrium conjecture which would induce a di¤erent outcome.
12In games with perfect information and no relevant ties, strong rationalizability yields as unique

outcome the SPE one, as proved by Battigalli and Siniscalchi [9] and Heifetz and Perea [23].
13Chen and Micali [14] already proved that backward induction without equilibrium reasoning,

i.e. purely as an elimination procedure, has an overlap with forward induction in terms of predicted
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captured by strong rationalizability)14 never give disjoint predictions.

While the rationalizability literature provides concepts and tools for the analysis,

the equilibrium re�nement literature was the �rst to introduce forward induction con-

siderations into equilibrium reasoning. Stable equilibria by Kohlberg and Mertens [24]

(henceforth K&M) is a set-valued solution concept that captures instances of forward

induction triggered here by a path agreement. Osborne [26] shows that equilibrium

paths that can be upset by a convincing deviation15 are not stable. Govindan and

Wilson [20] re�ne sequential equilibria with a weaker notion of forward induction.16

However, these works have two common shortcomings. First, they never question

subgame perfection as a must-have for a "strategically stable" solution.17 Second,

the strategic reasoning that leads to play (or reject) such equilibria is unclear (or

limited). The rationalizability approach adopted in this paper, which is backed by

epistemic foundations, allows to eliminate both shortcomings. First, there is no con-

straint about how precisely and on which kind of equilibrium or disequilibrium behav-

ior players agree. Second, there is transparency about which particular agreements,

beliefs and epistemic assumptions trigger di¤erent lines of reasoning.

In this sense, this work can also be interpreted as the axiomatic realization of a

program akin to K&M (see [24], p. 1020).18 Epistemic priority to rationality implies,

outcomes. In an earlier paper, Battigalli [4] proves the same result in a smaller class of games.
14Strong-rationalizability captures "unrestricted" forward induction, based on the beliefs in ra-

tionality only. The existence of such Nash allows to easily claim the existence, at least in 2-players
games, of an implementable SPE outcome distribution with agreements on mixed actions. In this
sense, also "restricted" forward induction based on the agreement and subgame perfection do not
give disjoint predictions. In 2-players games, Govindan and Wilson [20] prove the existence of se-
quential equilibria which capture a weak notion of forward induction based on the beliefs in the
equilibrium path, see footnote 16.
15Particular sequences of equilibria of the stage game of a �nitely repeated game. I characterize

them as non credible agreements in the Online Appendix.
16In the re�ned sequential equilibria, players believe in strategies of the opponent which are

best replies to a weakly sequential equilibrium with the same outcome distribution, but without
restrictions on beliefs. Thus, beliefs in rationality and in the path above the second order are not
captured. (I conjecture that second order beliefs are, whereas the authors observe explicitely strong
belief in rationality only.)
17In some cases, the actual realization of K&M�s ideal program departs from subgame perfection.

Yet, in the attempt to capture it, valuable equilibria are disregarded: all the non-SPE outcomes
implemented in the examples of this paper are unstable, although they also pass the credibility test,
so they are compatible with forward induction a la K&M (see this paragraph). K&M regard the
inability to imply subgame perfection as a weakness of stability, and "hope that in the future some
appropriately modi�ed de�nition of stability will, in addition, imply connectedness and backwards
induction." This paper suggests the opposite direction.
18K&M write: "We agree that an ideal way to discuss which equilibria are stable, and to delineate
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in generic games, iterated weak dominance.19 Implementable outcomes are proved

(and not assumed) to be admissible and Nash. Full-�edged forward induction reason-

ing is captured and clari�ed.20 Agreements on pure actions provide clear motivation

and intuitive implementation, whereas stability requires hard-to-guess mixed strate-

gies even for the most intuitive outcomes. Finally, I do not disregard non subgame

perfect equilibrium outcomes. Players are not necessarily required to coordinate on

expected behavior after a deviation. A credible threat must be optimal against a

plan of the deviator which is compatible with what the deviation signals (after all

possible steps of reasoning) about her future intentions. In the equilibrium literature,

forward induction is based on the following interpretation of a deviation: the deviator

believed in the path (i.e. that the co-players would have followed the path), but does

not believe in the threat. But then, that the threat is a best reply to a plan of the

deviator which is a best reply to the threat itself is of no additional value. Moreover,

threats compatible with both forward induction and subgame perfection typically do

not exist (see the �rst example of Section 4.1): if a threat compatible with forward

induction is made explicit, then that another threat is subgame perfect is of no addi-

tional value either. If the threat is not explicit, subgame perfection will be obtained

as a result and not as an assumption (see Theorem 2), but very few SPE paths are

self-enforcing. Selective rationalizability is based on an agnostic interpretation of de-

viations: when a rational player displays disbelief in the agreement, the co-players are

free to assume that the agreement has been believed to any partial extent compatible

with the observed behavior.21 In addition, a "theoretical" rather than "literal" use of

path agreements, in the fashion of the Iterated Intuitive Criterion by Cho and Kreps

[15], allows to evaluate the robustness of threats against the interpretation above (see

Example 2 in Section 2 for clari�cations).22 The implementation of all the outcomes

this common feeling, would be to proceed axiomatically. However, we do not yet feel ready for
such an approach; we think the discussion in this section will abundantly illustrate the di¢ culties
involved." Thirty years later, the achievements of epistemic game theory allow to overcome many of
these di¢ culties.
19In generic games, iterated weak dominance is equivalent to strong rationalizability (see Battigalli

and Siniscalchi [10]), of which selective rationalizability is a re�nement.
20In K&M, forward induction is de�ned on the normal form. This makes it hard to understand

to what extent forward induction reasoning is captured, especially at information sets that do not
immediately follow a unilateral deviation from the equilibrium path, and for many steps of reasoning.
21Strong-�-rationalizability assumes instead that the agreement is always fully believed.
22Selective rationalizability can be modi�ed to capture a �ner epistemic priority ordering, with

the beliefs in the compliance with the path in between the beliefs in rationality and the beliefs in
the threats. This would automatize such robustness control.
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in the examples of this paper is robust in this sense.

To explain intuitively these ideas, Section 2 discusses two examples (formally

solved in the Online Appendix). In the �rst, players can pro�tably agree on a non

subgame perfect equilibrium of the game, also when they assign priority to rationality.

In the second, players would like to achieve a desirable SPE outcome, but forward

induction reasoning makes the corresponding agreement not credible. Section 3 in-

troduces the theoretical framework and the analytic tools for the formal treatment of

Section 4. Section 5 concludes with directions for future research. The proofs of the

theorems where observability of actions and �niteness are actually used are postponed

to the Appendix.

2 Main examples

Example 1 In a city, two parties can form a coalition for the election of the mayor

if they choose the same positioning on a few issues. If they both choose a Radical

positioning, their coalition will win and split equally a surplus of 10. If they both

choose aModerate positioning, their coalition will win and the surplus to split grows

to 12. The problem is that Party 2 may be tempted to take a radical positioning even

if Party 1 chooses a moderate one. In this case, P2 would not win at the �rst round

but would acceed to the second round (a ballot) against a third candidate. In the

last public speeches, P1 can ask its voters to Support P2 or the Alternative candidate

and P2 can make a political O¤er to P1�s voters, which costs 2, or Not. P2 wins for

sure if P1 supports and with probability 1=2 if not but the o¤er is made. P1 earns 2

if the supported candidate wins, unless P2 wins without making the o¤er.

P1nP2 M R P1nP2 N O

M (6; 6) �� � �� � ! A (2; 0) (1; 4)

R (0; 0) (5; 5) S (0; 10) (2; 8)

The subgame has only one equilibrium, where A and N are played with probability

1=3. Since the payo¤ of P2 in this equilibrium is higher than 6, (M;M) is not a SPE

outcome. Yet, it is the outcome of a Nash equilibrium where P1 plays M and A and

P2 plays M and N .
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The two parties meet before declaring their positioning to the public and try to

reach an agreement. Can they credibly agree on the Nash equilibrium? The answer

is yes and it is robust to the two di¤erent epistemic priority assumptions. Suppose

that P2 deviates to R. Is it credible that P1 replies with A? A rational P2 believing

in the agreement would not have played R. Hence P1 must either believe that P2
does not believe in the agreement or that it is irrational. If P1 drops the belief that

P2 is rational (epistemic priority to the agreement), it can expect any move and A is

a best reply to N . If P2 believes that P1 reasons in this way, it can believe that P1
would reply to the deviation with A. The agreement is credible and, once believed,

players will play (M;M), consistently with the agreement. If P1 drops the belief

that P2 believes in the agreement (epistemic priority to rationality), it can expect

any rational move: (R:N) is a best reply to all conjectures that put probability 1

on S and A is a best reply to N in the subgame.23 Again, if P2 believes that P1
reasons in this way, it can believe that P1 would reply to the deviation with A; so the

agreement is credible and players will play (M;M). That is, the complete agreement

on the Nash pro�le is self-enforcing. To keep the games simple, situations where the

incompleteness of the agreement is instead necessary to implement a desirable Nash

outcome are provided in the last examples of Section 4.1 and 4.2.

Note that the threat is credible also if P2, after the deviation, is assumed to be

rational and have believed in the path (i.e. that P1 would have played M) although

not in the threat. Rationalizing the deviation in this way, P1 can expect P2 to play

N and hence best reply with A. Expecting this rationalization, P2 can believe in A

and hence not deviate.

The agreement on the SPE path (R;R) is self-enforcing. In other cases, forward

induction reasoning based on the beliefs in the path may rule out the o¤-the-path

beliefs that are necessary to prevent a deviation.24 This is the case in Example 2.

Example 2 The duopolists of the cola market, A and B, have to decide their

marketing strategy before two big sport events, for which the population will gather

23Also (R:O) is rational. But S is best reply to O and N is best reply to S, so we can run in circle
and the incentive to play A remains compatible with the beliefs in rationality of all orders.
24Forward induction arguments can also go in favour of the agreement. Suppose that after a

unilateral deviation from a path agreement, the deviator can get a higher payo¤ than under the
path only if the co-player plays a certain action. Suppose that this action is best reply only to an
action that prevents the deviator to get a higher payo¤ than under the path. Then this action will
not be played and the possibility of deviation is ruled out via forward induction.
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in front of the television. There are 10 million buyers: 2 of them are somewhat loyal

to brand A, 2 of them are somewhat loyal to brand B, the others just follow the

advertisments before the event (if both or none brands do it, they split equally). At

the current price, each million of buyers brings a pro�t of 1. Advertising costs 2. There

is also another marketing strategy, which consists of a discount in the supermarkets

before the event. Every buyer switches to the brand making discounts, but the pro�t

drops to 0:2 per million buyers.

The game is a twice repeated prisoner dilemma with a punishment action, because

advertisement (D) is a best reply to both no advertisment (C) and advertisment, while

the aggressive discount campaign (P ) is best reply only to the other �rm doing the

same, and the pro�ts of both �rms fall anyway.

AnB C D P

C 5; 5 2; 6 0; 2

D 6; 2 3; 3 0; 2

P 2; 0 2; 0 1; 1

There is a SPE where the two �rms collude in the �rst stage. Suppose that the two

marketing directors, Ann and Bob, agree not to advertise their products before the

�rst event and to do it before the second event. It is understood that the agreement

falls through if it was violated for the �rst event. All this sums up to agreeing on the

SPE path.

The agreement does not rule out punishment P after a deviation; therefore, it

seems possible (although not guaranteed) that players fear it and comply with the

path. Instead, by forward induction reasoning, punishment is actually ruled out and

thus the path agreement is not credible. Bob, if he is rational and believes that

Ann will comply with the agreement, will play D in the �rst stage only if he does not

expect P in the second. Ann, if she believes this and observesD, will then (by forward

induction) expect Bob to play D again and play D herself. Bob, if he believes that

Ann would interpret the deviation in this way, will actually play D in the �rst stage.

Ann, if she believes that Bob expects such interpretation, will predict the deviation

and not believe in the agreement.

Two objections may be raised at this point.

First, Ann could interpret the deviation as follows: "Bob believed that I would
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have not complied with the agreement, and best replied by not complying himself."

But then, if the beliefs of Ann are dynamically consistent (as I will require), she must

believe that Bob does not trust her from the start: the deviation of Bob, assuming

he is rational, is not at odds with the belief that Ann complies with the agreement.

Second, anticipating that the path agreement would not work, players could ex-

plicitely threaten the punishments beforehand. In the next section I propose a few

reasons why this may not happen. However, even if players reach the complete agree-

ment, the non credibility of the path agreement could make the belief in the complete

agreement fall for the following reason. Suppose that after a deviation, the co-players

pose themselves the following dilemma: the deviator did not believe in the agreement

on path (i.e. she expected someone else to deviate) or does not believe in our post-

deviation threat? If the co-players rationalize the deviation in the second way, the

instances of forward induction reasoning triggered by a path agreement take place.

Battigalli and Siniscalchi ([11] and [12]) show that the Iterated Intuitive Crite-

rion test is equivalent to non-emptiness of strong-�-rationalizability under the re-

strictions that correspond to the equilibrium outcome distribution. Theorem 1 in

Section 4.1 will prove that non-emptiness of selective rationalizability and of strong-

�-rationalizability are equivalent for path restrictions. Therefore, the "credibility

of the path agreement" test can be seen as a generalization25 of the Iterated Intu-

itive Criterion, and provides for it the motivation above. Moreover, only strongly

rationalizable outcomes can pass the test (see Proposition 1). The test is applied

to "equilibrium paths that can be upset by a convincing deviation" in the Online

Appendix, and it gives negative response. When the test gives positive response, it

also provides conjectures under which players comply with the path and which are

compatible with the rationalization of deviations discussed above. From such conjec-

tures, it may be possible to derive an agreement that implements the outcome. This

possibility is discussed in Section 4.2.

25Once extended to outcome distributions and games with incomplete information.
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3 Agreements, beliefs and strategic reasoning

3.1 Preliminaries

Let I be the �nite set of players. For any collection (Xi)i2I and J � I, I write XJ :=

�j2JXj, X := XI and X�i := XInfig; for any pro�le x 2 X, I write xJ := ProjXJx.
Let (Ai)i2I be the �nite sets of actions potentially available to each player and

H � [t=1;:::;TA
t [ f;g, where T is the �nite horizon of the game, the set of histories,

with the following properties:

� h0 := f;g 2 H (root of the game);

� for any h = (a1; :::; at) 2 H and l < t, h0 = (a1; :::; al) 2 H and I write h0 � h;26

� calling Z := fz 2 H : 8h 2 H; z 6� hg the set of terminal histories and
H := HnZ the set of non-terminal histories, for every i 2 I there exists a

non-empty-valued correspondence Ai : H � Ai such that for every h 2 H,

(h; a) 2 H if and only if a 2 A(h).

Finally, for every i 2 I, let ui : Z ! R be the payo¤ function; � =


I;H; (ui)i2I

�
is a �nite game with complete information and observable actions.

Now I can derive the following objects. A strategy is a function si : H ! Ai such

that for every h 2 H, si(h) 2 Ai(h). The set of all strategies is denoted by Si. The
set of strategies that are compatible with a history h = (a1; :::; at) 2 H is de�ned as:

Si(h) :=
�
si 2 Si : si(h0) = a1i ^ 8l < t; si((a1; :::; al)) = al+1i

	
:

For any Si � Si, Si(h) := Si(h) \ Si and Si[h] := fai 2 Ai : 9si 2 Si(h); si(h) = aig.
On the other hand, the set of histories that are compatible with a set of strategy

(sub-)pro�les SJ � SJ is de�ned as H(SJ) :=
�
h 2 H : SJ(h) 6= ;

	
. Then, the

sets of terminal histories and non-terminal histories that are compatible with SJ are

respectively �(SJ) := H(SJ) \ Z and H(SJ) := H(SJ) \H.
Given a strategy si 2 Si, the set of realization equivalent strategies is [si] := fs0i 2

Si : 8h 2 H(si); s0i(h) = si(h)g. The immediate predecessor of a history h 2 Hnfh0g
is denoted by p(h).27

26H endowed with the precedence relation � is a tree with root h0.
27The history h0 such that h = (h0; a) for some a 2 A.
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In games with observable actions, every player always knows the current history

of the game. That is, information sets are singletons and coincide with histories. I

will use the term information set instead of history when it is the appropriate one in

games where the two do not coincide. Note moreover that to simplify notation every

player is required to play an action at every history: when a player is not truly active

at a history, her set of feasible actions consists of just one "wait" action.

3.2 Agreements, complete agreements and path agreements

I consider pre-play, non-binding agreements among players of the following form.

De�nition 1 (Agreement) An agreement is a pro�le of correspondences e = (ei :
H � Ai)i2I ; such that for every i 2 I and h 2 H, ; 6= ei(h) � Ai(h).

An agreement speci�es at every information set the pure actions among which

players are expected to choose. Note that the agreement can restrict the behavior

of players also at information sets that are supposedly precluded by the agreement

itself. When this is not the case and the agreement allows to reach only one outcome

of the game, I call it a path agreement.

De�nition 2 (Path Agreement) Fix z = (a1; :::; at) 2 Z. A path agreement on z
is an agreement e = (ei)i2I such that for every i 2 I, ei(h0) = a1i ; for every l < t,

ei((a
1; :::; al)) = al+1i ; for every h 6� z, ei(h) = Ai(h).

Path agreements are particularly interesting for many reasons. First, they corre-

spond to a very natural kind of agreement: choosing an outcome as a goal. Second,

punishments are not explicitely threatened in many real-life situations: discussing

what to do in case the partner defects is an inconvenient way to start a relationship.

Third, players may anticipate that punishments would not be believed: the belief in

an agreement that has already been violated is very likely to fall. Or, punishments

may be believed only if compatible with the rationalization of deviations from the

path discussed in the previous section. Both for its self-enforceability as real agree-

ment and for its credibility as test, a path agreement has an additional desirable

property: conclusions are robust to the epistemic priority choice (see Theorem 1).

A complete agreement assigns one action to each player at each information set.

Thus, it can correspond to an entire (subgame perfect) equilibrium of the game.
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The wide range of agreements between path and complete will turn out to be useful

too. The next subsection provides the tools for the evaluation of any agreement.

3.3 Beliefs, rationality and rationalizability

The elementary belief that an agreement may be able to induce is that the co-players

will comply with it. This belief can be represented as a restricted set of conjec-

tures about which strategies the co-players are going to play. In this dynamic frame-

work, beliefs are modeled as Conditional Probability Systems (Renyi, [29]; henceforth,

CPS). Here I de�ne CPS�s directly for the problem at hand.

De�nition 3 A Conditional Probability System on (S�i; (S�i(h))h2H) is a mapping

�(�j�) : 2S�i � fS�i(h)gh2H ! [0; 1] satisfying the following axioms:

CPS-1 for every C 2 (S�i(h))h2H , �(�jC) is a probability measure on S�i;

CPS-2 for every C 2 (S�i(h))h2H , �(CjC) = 1;

CPS-3 for every E 2 2S�i and C;D 2 (S�i(h))h2H , if E � D � C, then �(EjC)=�(EjD)�(DjC).

The set of all CPS�s on (S�i; (S�i(h))h2H) is denoted by �H(S�i).

For brevity, the conditioning events will be indicated with just the information

set, which represents all the information acquired by players through observation.

I say that players believe in the agreement if at every information set they believe

in what the agreement prescribes at the subsequent ones. In the Online Appendix,

an example shows the important reason why players are not required to believe in

strategies that comply with the agreement at information sets which have not been

reached and cannot be reached anymore.

De�nition 4 (Belief in the agreement) Fix an agreement e = (ei)i2I . For every
i 2 I, let �e

i be the set of all �i = (�i(�jh))h2H 2 �H(S�i) such that for every h 2 H:

Supp�i(�jh) �
n
(sj)j 6=i 2 S�i(h) : 8j 6= i;8eh � h; sj(eh) 2 ej(eh)o :

Note that any two players have the same restrictions about any third player. For

a path agreement on z 2 Z, �e
i coincides with the set of �i 2 �H(S�i) such that

�i(S�i(z)jh0) = 1: path agreements will be treated keeping this speci�cation in mind.
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For any agreement e = (ei)i2I and each player i 2 I, �e
i is compact:

28 this allows

to claim that selective rationalizability and strong-�-rationalizability with (�e
i )i2I

have the epistemic characterizations of [13] and, for instance, [8].

I consider players who reply rationally to their conjectures. By rationality I mean

that players, at every information set, choose an action that maximizes expected

utility given the conjecture about how co-players will play and the expectation to reply

rationally again in the continuation of the game. This is equivalent (see Battigalli

[3]) to playing a sequential best reply to the CPS.

De�nition 5 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if
for every h 2 H(si), si is a continuation best reply to �i(�jh), i.e. for every esi 2 Si(h),X

s�i2Supp�i(�jh)

ui(�(si; s�i))�i(s�ijh) �
X

s�i2Supp�i(�jh)

ui(�(esi; s�i))�i(s�ijh).
I say that a strategy si is rational if it is a sequential best reply to some �i 2

�H(S�i). The set of sequential best replies to �i is denoted by �(�i). The set of best

replies to a conjecture �i 2 �(S�i) in the normal form of the game is denoted by

r(�i). Note that if si 2 �(�i), [si] � �(�i), and if si 2 r(�i), [si] � r(�i). Moreover,
the following relationship between continuation and sequential best replies holds: if

si is a continuation best reply to �i(�jh) and h 2 H(�(�i)), there exists bsi 2 �(�i)(h)
such that for every eh � h, if eh 2 H(Supp�i(�jh)), then bsi(eh) = si(eh). The reason is
that a continuation best reply at h has to be a continuation best reply at every history

h0 that can be reached with positive probability from h, because the conjecture at h0

is the conjecture at h conditional on h0.

Here I take the view that players re�ne further their conjectures through strategic

reasoning based on beliefs in rationality and beliefs in the belief in the agreement. If

players assign epistemic priority to (the beliefs in) the agreement (see the Introduction

and [13]), the appropriate solution concept is strong-�-rationalizability. I translate

its ultimate de�nition by Battigalli and Prestipino [8] in the framework of this paper.

De�nition 6 (strong-�-rationalizability) Fix an agreement e = (ei)i2I .
28For each h 2 H, the set of probability measures that assign probability 1 to a particular subset

of S�i(h) is compact in �(S�i), endowed with the topology of weak convergence. Thus, the set of
arrays of probability measures that believe in the remainder of the agreement at every information
set is compact in (�(S�i))H , endowed with the product topology. Since �ei is the intersection
between such set and the compact set �H(S�i), it is compact itself.
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(Step 0) For every i 2 I, let S0i;�e = Si.

(Step n > 0) For every i 2 I and si 2 Si, let si 2 Sni;�e if and only if there exists
�i 2 �e

i such that:

D1 si 2 �(�i)

D2 8q = 0; :::; n � 1; 8h 2 H; Sq�i;�e(h) 6= ; ) �i(S
q
�i;�ejh) = 1 (i.e. �i strongly

believes Sq�i;�e);

Finally let S1i;�e = \n�0Sni;�e. The pro�les in S1�e are called strongly-�-rationalizable.

Strong rationalizability (Battigalli and Siniscalchi, [10]) can be seen as a special

case of strong-�-rationalizability where no restriction applies (�e
i = �

H(S�i)) and it

will be denoted by dropping the subscript �e.

The n-th step of strong-�-rationalizability captures the �rst n assumptions below:

1. players are rational and believe that co-players will comply with the agreement

(and believe that everyone else will comply with the agreement, and so on);

2. players believe that 1 holds as long as not contradicted by observation (i.e. at

every information set that can be reached if 1 holds);

3. players believe that 1 and 2 hold as long as not contradicted by observation;

4. ...

The sentence in brackets in assumption 1 means that players commonly believe

in the agreement at every information set, regardless of the compatibility with be-

liefs in rationality of any order. This is not a necessary assumption to characterize

strong-�-rationalizability: the belief in the agreement of order n has no behavioral

implication once the belief in rationality of order n � 1 is dropped. Both epistemic
characterizations can be found in [8].

Strong-�-rationalizability does two things.

First, it constitutes a compatibility test for the belief in the agreement with the

strategic reasoning hypotheses. If strong-�-rationalizability delivers an empty set,

the agreement does not pass the test. This happens when a player at some step

allows an information set only with strategies that do not comply with the remainder
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of the agreement, hence they are not compatible with the �rst-order-belief restrictions

of the co-players.

Second, if the agreement passes the test, the strongly-�-rationalizable strategy

pro�les coincide with the behavioral implications of rationality, (common) belief in

the agreement, and common strong belief in, jointly, rationality and (common) belief

in the agreement.

If players assign epistemic priority to rationality (see the Introduction and [13]),

the appropriate solution concept is selective rationalizability [13].

De�nition 7 (selective rationalizability) Fix an agreement e = (ei)i2I . Let ((Smj )j2I)m�0
be the strong rationalizability procedure.

(Step 0) For every i 2 I, let S0i;R�e = Si.

(Step n > 0) For every i 2 I and si 2 Si, let si 2 Sni;R�e if and only if there exists
�i 2 �e

i such that:

S1 si 2 �(�i);

S2 8q = 0; :::; n� 1; 8h 2 H; Sq�i;R�e(h) 6= ; =) �i(S
q
�i;R�ejh) = 1;

S3 8q � 0; 8h 2 H; Sq�i(h) 6= ; =) �i(S
q
�ijh) = 1.

Finally let S1i;R�e = \n�0Sni;R�e. The pro�les in S1R�e are called selectively-rationalizable.

The n-th step of selective rationalizability captures the �rst n assumptions below:

1. players believe in the agreement, are rational, believe that co-players are rational

(as long as not contradicted by observation), and so on;

2. players believe that 1 holds as long as not contradicted by observation;

3. players believe that 1 and 2 hold as long as not contradicted by observation;

4. ...

The �rst step already captures common strong belief in rationality [10]. This is

necessary to guarantee that at every information set players give epistemic priority

to the beliefs in rationality of all order which are compatible with the information
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set (see the Discussion section of [13] for details). Hence, selective rationalizability

re�nes strong rationalizability by selecting the strategies that are compatible with the

beliefs in the agreement and consequent forward induction reasoning.

Selective rationalizability accomplishes the same two tasks of strong-�-rationalizability.

A non-empty set of selectively-rationalizable strategy pro�les coincides with the be-

havioral implications of (i) rationality and common strong belief in rationality, (ii)

belief in the agreement, and common strong belief in, jointly, (i) and (ii).

As already argued, it seems more plausible that players will assign epistemic pri-

ority to rationality in presence of a non-binding agreement. However, for robustness

purposes and theoretical insight, the next section evaluates agreements with both

rationalizability tools.

4 Self-enforceability and implementability

4.1 Credibility and self-enforceability

In order to evaluate a given agreement, two features have to be investigated. First,

whether the agreement is credible or not. Second, if the agreement is credible, whether

players will comply with it or not.

An agreement is credible if it passes the appropriate rationalizability test. For

brevity, the generic rationalizability procedure will be indicated with the subscript

e; it has to be replaced with �e or R�e to obtain the correct expressions under the

chosen epistemic priority assumption.

De�nition 8 (Credibility) An agreement e = (ei)i2I is credible if S1e 6= ;.

Credibility does not imply that players will comply with the agreement, but only

that they may do so. If players, once they re�ne their conjectures according to the

agreement, always have the strict incentive to comply with it, the agreement is self-

enforcing.

De�nition 9 (Self-enforceability) An agreement e = (ei)i2I is self-enforcing if it
is credible and for every i 2 I, si 2 S1i;e and h 2 H(S1e ) \H(si), si(h) 2 ei(h).

The de�nition requires explicitely that every rationalizable strategy complies with

the agreement at the information sets which can be reached under (itself and) the
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rationalizable strategy pro�les, so that violation of the agreement will actually occur.

Credibility implies that players also believe in the compliance with the agreement at

the other information sets, so that the desired behavioral consequences apply.

One might think that a self-enforcing agreement under priority to rationality will

be, a fortiori, self-enforcing under priority to the agreement. An example in the

appendix of [13] shows that this is not the case. Instead, for a path agreement

credibility and self-enforceability are robust to the epistemic priority assumption.

Theorem 1 A path agreement is credible/self-enforcing under priority to rationality
if and only if it is credible/self-enforcing under priority to the agreement.

Hence, all the conditions for credibility and self-enforceability of path agreements

can be stated regardless of the epistemic priority assumption, and the proofs can rely

on either selective rationalizability or strong-�-rationalizability.

The �rst condition claims that a path can be credible only if it is induced by some

strongly rationalizable strategy pro�le.29

Proposition 1 Fix z 2 Z. If z 62 �(S1), the corresponding path agr. is not credible.

Proof. Selective rationalizability is a re�nement of strong rationalizability. �
Thus, only a strongly rationalizable outcome can pass the credibility test.30

This necessary condition for credibility becomes su¢ cient for self-enforceability

when the path is the only strongly rationalizable one.

Proposition 2 If �(S1) is a singleton, the corresponding path agr. is self-enforcing.

Proof. Let �(S1) = fzg. For every i 2 I, S1i � Si(z). Thus, for every j 2 I
and �j 2 �H(S�j) that satis�es S3, �j(S�j(z)jh0) = 1, so �j 2 �e

j . Hence, the

restrictions are immaterial, so that selective rationalizability coincides with strong

rationalizability after convergence.31 �
29Moreover, results of Battigalli and Siniscalchi [11] imply that only a self-con�rming equilibrium

outcome (Fudenberg and Levine [18]; called conjectural equilibrium in Battigalli [2]) can pass the
credibility test. However, for implementability the outcome will need to be Nash.
30By virtue of Remark 7 in the Appendix, this property holds true if the test is extended to

distributions over outcomes rather than just one outcome. The extension to incomplete information
games would prove that the Iterated Intuitive Criterion selects strongly rationalizable outcomes.
31Selective rationalizability without actual restrictions could be empty when there exists i 2 I

and si 2 S1i such that for every �i that strongly believes (S
n
�i)n�0, si 62 �(�i). This is never the

case under �niteness or mild regularity conditions.

18



Analogously, while SPE paths can be self-enforcing or not, non SPE paths can be

credible but not self-enforcing.

Theorem 2 Fix z 2 Z. If the corresponding path agreement is self-enforcing, then
there exists a SPE32 (�i)i2I 2 �i2I�(Si) such that for every i 2 I, �i(Si(z)) = 1.

Di¤erently than for strongly rationalizable paths, when the game has only one

SPE path, it needs not be self-enforcing.

A � � ! A=B L C R

O # I U (5; 0) (0; 5) (0; 0)

(4; �) M (0; 5) (5; 0) (0; 0)

D (3; 0) (3; 0) (3; 3)

In the subgame, there is no equilibrium where both U and M are played: if Ann

is indi¤erent between them, she prefers D. If U was played and M not, Bob would

not play L, so U cannot be a best reply, and analogously for M . Thus, the unique

equilibrium is (D;R) and it induces Ann to choose the outside option. Yet, Ann may

be su¢ ciently con�dent of L or C to enter the subgame and play U or M .33 This

also implies that the subgame perfect threat R is not credible, being a best reply

only to D. The path is however credible. It can be shown that a path is credible

when it is the unique SPE path or, more generally, when it is robust to any choice of

o¤-the-path equilibria:34 this is the notion of credibility used by Gossner [19] in his

work on incomplete codes.

When SPE paths are more than one, none of them may be even credible.35 Con-

sider the twofold repetition of the following game. The players must perform a task

that yields a pro�t of 3 to each of them at the total e¤ort cost of 2. If at least one

32SPE in mixed strategies are de�ned in the Appendix, using additional notation. For every SPE
in mixed strategy there is a SPE in behavioral strategies that induces the same outcome distribution,
thus the Theorem holds also with SPE in behavioral strategies.
33So that Bob in turn may reply with L or C and all 4 actions remain rationalizable.
34For a path not to be credible, some player at some step of the rationalizability procedure must

have the incentive to abandon it for every reaction she may expect to her deviation. The inner
recursive step in the proof of Lemma 10 in the Appendix shows that in such case a (probabilistic)
SPE path of the subgame would have survived until that step. This shows that the non credible
path cannot fall in the class I am considering.
35I conjecture that with agreements on mixed actions, a credible SPE outcome distribution exists.

This would extend the main result of Govindan and Wilson [20] to full-�edged forward induction
reasoning.
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player works, the task is performed; if only one player works, she pays the total cost

of e¤ort; if they both work, they share the e¤ort cost equally.

AnB Work FreeRide

W 2; 2 1; 3

FR 3; 1 0; 0

No deterministic SPE path is even credible. If the path prescribes the same Nash in

both stages, the unhappy player can signal with a deviation the intention to switch to

the preferred equilibrium in the second stage. If the path prescribes to play one Nash

in the �rst stage and the other Nash in the second stage, the player whose preferred

equilibrium is played in the �rst stage can deviate from it to signal the intention to

play it in the second stage. Similar paths have been already classi�ed by Osborne

[26] for 2-players, �nitely-repeated games as equilibrium paths that can be upset by a

convincing deviation; in the Online Appendix, the de�nition and the formal reasoning

that makes them not credible are provided.

For complete agreements the equivalence between self-enforceability under pri-

ority to the agreement and under priority to rationality does not hold. When the

epistemic priority falls on the agreement, a "strict" SPE is self-enforcing. I say that

an equilibrium s 2 S is strict when for every i 2 I, ri(s�i) � Si(�(s)). The proof of
this result is in the Online Appendix.

When the epistemic priority falls on rationality, instead, not all SPE are credible

agreements. A SPE outcome may not be strongly rationalizable, hence also not

selectively rationalizable. Moreover, even if the outcome is strongly rationalizable,

the SPE strategy pro�le may be not.36 Yet, the outcome may be induced also by some

Nash equilibrium in strongly rationalizable strategies. Or, like in the �rst example of

Section 2, players may be interested in a non subgame perfect equilibrium. For Nash

equilibria, also when the priority falls on the agreement, the complete agreement may

not work, because an o¤-the-path threat may not be optimal against any clear-cut

intention of the deviator or of a third player. Here I illustrate an example of the �rst

36Even in a perfect information game like the variation of the centipede in Reny [28], the agree-
ment corresponding to the only SPE is not credible, because among the strongly rationalizable
strategy pro�les, despite inducing the SPE outcome, there is not the SPE one (forward induction
and backward induction moves do not coincide)
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kind; an example of the second kind is provided at the end of the next subsection.

Ann � � �!
O # I

(4; 4)

AnB L C R

U (9; 0) (8; 3) (1; 2)

D (8; 3) (9; 0) (0; 2)

In this game, O is not a SPE outcome because in any equilibrium of the subgame, R

cannot be played with probability higher than 1=2 (otherwise Ann would play U and

Bob C). The Nash equilibria (O:U;R) and (O:D;R) are not self-enforcing agreements:

whatever Ann promises to do in case she deviates to I, R is not a best reply. Yet, if

Bob refuses to "listen" to Ann�s post-deviation promises, the incomplete agreement

on O and R is self-enforcing (regardless of the epistemic priority assumption).

Therefore, when players want to implement some equilibrium of the game and are

prone to discuss and believe o¤-the-path threats, it is more appropriate to tackle the

problem through the alternative perspective: can the outcome be implemented by

some agreement? This issue is addressed in the next subsection.

4.2 Implementability

Taking the opposite, implementation perspective, which outcomes of the game can be

achieved through some agreement? I say that a set of outcomes is implementable if

for some agreement the appropriate rationalizability procedure delivers a non-empty

subset of it.

De�nition 10 (Implementability) A set of outcomes P � Z is implementable if

there exists a credible agreement e = (ei)i2I such that �(S1e ) � P .

In the Online Appendix I discuss the relationship between implementability and

two much weaker but somehow related solution concepts: Extensive Form Best Re-

sponse Sets (Battigalli and Friedenberg, [7]) and Mutually acceptable courses of ac-

tions (Greenberg et al., [21]).

Focusing on a single outcome, one should �rst check if the corresponding path

agreement is self-enforcing.37 If this is not the case, regardless of the epistemic priority

assumption, implementability by loosening restrictions can be excluded.

37Given the results of Section 4.1, one can hope so only for a strongly rationalizable, SPE outcome.
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Theorem 3 Fix z 2 Z and the corresponding path agreement e = (ei)i2I . If z is

implemented by some agreement e0 = (e0i)i2I such that for every i 2 I and h 2 H,
ei(h) � e0i(h), then e = (ei)i2I is self-enforcing.

Thus, if players want to reach a given outcome, without willing or trusting the

possibility to coordinate in case of deviation, they cannot do any better than agreeing

on the path. This is a sort of "revelation principle" for agreements design: leaving

some mystery about on-the-path moves cannot be of any help for the goal.

Allowing for o¤-the-path restrictions, is it possible to implement a non-equilibrium

outcome? The answer is negative under both epistemic priority assumptions. For

the remainder of this section, the needed additional arguments for the priority to

rationality/selective rationalizability case are provided in square brackets.

Proposition 3 Fix z 2 Z. If z is implemented by e = (ei)i2I , then there exists a

strict Nash equilibrium s 2 S1e such that �(s) = z.

Proof. Fix i 2 I. By credibility there exists �i 2 �e
i such that �i(S

1
�i;ejh0) = 1.38

So, for every j 6= i, there exists sj 2 S1j;e such that for every h 2 H, sj(h) 2 ej(h).
By implementability sj 2 Sj(z).
Fix �i 2 �e

i that strongly believes (S
n
�i;e)

1
n=0 [and (S

n
�i)

1
n=0] such that �i(s�ijh0) =

1. Suppose by contradiction that ; 6= r(�i(�jh0))nSi(z) 3 esi. Then there would existbsi 2 �(�i) such that for every h 2 H(esi) \H(s�i), esi(h) = bsi(h),39 so that bsi 62 Si(z)
too, contradicting implementability. So si 2 r(s�i) = r(�i(�jh0)) = Si(z). �

The condition is not su¢ cient. In the last example, (R1; L2) is a strict Nash

outcome that cannot be implemented by any agreement, because it is sustained by

R3 and R4 but R3 is not rational against R4. If players are more than two, o¤-the-

path threats of two di¤erent players, even if rational, may be incompatible with each

other. With two players, still, a threat could be rational but not optimal against

any clear-cut intention of the deviator. In the second case, there are clear conditions

under which the problem can be solved by leaving the agreement incomplete (see the

end of the previous subsection for an example).

38This may be false when there exist i 2 I and si 2 S1i;e such that for every �i that strongly
believes (Sni;e)n�0, si 62 �(�i). This is never the case under �niteness or mild regularity conditions.
39See the relationship between continuation best replies and sequential best replies in Section 3.
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Proposition 4 Consider a 2-players game and a strict Nash equilibrium (s1;s2). If

s1 and s2 are rational [strongly rationalizable], z := �(s) is implementable.

Proof. For every i 2 I and h 2 H(si), let ei(h) = si(h), otherwise, let ei(h) =
Ai(h). Since si is rational [si 2 S1i ], there exists �i 2 �H(S�i) [that strongly believes

(Sn�i)
1
n=0]

40 such that si 2 �(�i). For every �i 2 �e
i , �i([s�i] jh0) = 1 and for every

s0�i 2 [s�i], since by strictness r(s�i) � Si(z), r(s0�i) � Si(z) too. Hence, S1i;e � Si(z),
yielding implementability in case of credibility. Then, for every i 2 I and m 2 N
such that s 2 Sm�1e , there exists e�i 2 �e

i that strongly believes (S
n
�i;e)

m�1
n=0 [and

(Sn�i)
1
n=0] such that e�i(s�ijh0) = 1 and for every h 62 H(S�i(z)), e�i(�jh) = �i(�jh). For

every h � z, e�i(s�ijh) = 1 and si 2 r(s�i); for every h 2 H(si)nH(S�i(z)), si is a
continuation best reply to e�i(�jh) by construction; else, h 62 H(Si(z)), so h 62 H(si).
Thus, si 2 �(e�i) � Smi;e. Inductively, s 2 S1e 6= ;. �

Hence, in 2-players games I can fully characterize the set of implementable out-

comes with equilibria in pure strategies as follows.

Theorem 4 Consider a 2-players game. An outcome z 2 Z is implementable under
priority to the agreement [rationality] if and only if there exists a rational [strongly

rationalizable] strict Nash equilibrium s 2 S such that �(s) = z.

Proof. The "if" direction coincides with Proposition 4. The "only if" direction
coincides with Proposition 3 once observed that if s 2 S1�e, s is rational and if

s 2 S1R�e � S1, s is strongly rationalizable. �
Then, since a rationalizable strategy is obviously rational, di¤erently than for self-

enforceability, implementability under priority to rationality implies implementability

under priority to the agreement (at least in two-players games).

Corollary 5 In a 2-players game, if an outcome is implementable under priority to
rationality, then it is implementable under priority to the agreement.

In games with more than two players, there is no equilibrium equivalent of imple-

mentable outcomes. Here I provide a 3-players game where a non subgame perfect

40Under piority to rationality, the existence is guaranteed by �niteness or mild regularity condi-
tions. Otherwise, the Proposition can be restated requiring such CPS�s to exist.
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equilibrium outcome is implementable thanks to an incomplete agreement (and in-

completeness is not only on the side of the deviator).

Ann �� ��� �� ! (4; 4; 4)

I j O

Cleo Bob #
M1 L C R M2 L C R

Ann U (8; 3; 0) (9; 0; 0) (1; 2; 1) �� U (8; 3; 0) (9; 3; 0) (1; 2; 0)

M (9; 3; 0) (8; 3; 0) (0; 2; 0) D (9; 0; 0) (8; 3; 0) (0; 2; 1)

Ann moves �rst and chooses between a "fair" outside option and a simultaneous

moves game with Bob and Cleo, where Cleo chooses the matrix. In any equilibrium

of the subgame, R cannot be played with probability higher than 1=2, otherwise Ann

would choose U and then Bob would switch to L. Thus, O is not a SPE outcome.

Still, Bob can credibly threaten to play R. For this to hold true, it is crucial that

Cleo does not reveal what she is going to play: for each matrix, Bob has a safe option

that dominates R. If Ann plays I, either she is irrational or she has not believed in

the threat. Under both interpretations, she may play U or M and Cleo may react

with M1 or M2. Thus, it is credible that Bob will react with R.

The de�nition of implementability can be strenghtened with the path agreement

credibility test. First, the outcome should pass the test. Second, the agreement that

implements the outcome should be compatible with forward induction reasoning based

on the beliefs in the path. A way to obtain this is to derive the agreement from

the conjectures under which players remain on path at the end of the test. Yet,

such conjectures may not be convertible into an agreement, because of: (correlated)

randomizations; strategic incompatibility between the threats of di¤erent players;

without observable actions, the disagreement of two deviators about the reaction to

the deviation of a third player who cannot recognize who the deviator is. Strategic

incompatibilities may be solved with an incomplete agreement. All the outcomes im-

plemented in the examples are credible, and the threats are compatible with forward

induction reasoning about the path.

If one insists on SPE outcomes, under priority to rationality an important pre-

liminary question arises: is there always the support of a SPE outcome distribution

among strongly rationalizable outcomes? The following theorem states that it is ac-
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tually so41 for the wide class of games with observable actions:42 subgame perfection

and strong rationalizability never give completely disjoint predictions.

Theorem 6 Consider the set of strongly rationalizable strategy pro�les S1. There
exists a SPE (�i)i2I 2 �i2I�(Si) and an equilibrium (e�i)i2I 2 �i2I�(S1i ) such that
for every z 2 Z,

Q
i2I �i(Si(z)) =

Q
i2I e�i(Si(z)).43

5 Directions for future research

The issue of compliance with agreements could be interestingly analyzed in psycho-

logical games (see for instance Battigalli and Dufwenberg [6]) or games with ambi-

guity averse players. Both ambiguity aversion and belief-dependent payo¤s, like in

the case of guilt-averse players, could sustain the self-enforceability a wider range of

agreements, including path ones. Other psychological considerations could motivate

formally the preference for path agreements, which do not involve the discussion of

what to do in case someone defects.

The methodology developed here can be applied to a wide range of economic

problems, from non-binding commitment of governments (see for instance Bassetto [1]

on capital taxation) to dynamic collusion in oligopolies. On this topic, Harrington [22]

documents instances of mutual partial understanding among �rms whose implications

can be understood with the methodology of this paper. Another application which is

close in spirit to this work can be found in Gossner [19]. In his study of incomplete

codes, he calls self-enforcing the equilibrium paths that can be sustained by any choice

of equilibria in the o¤-the-path subgames. As already argued, such paths are at least

credible in the sense of this paper (but, so far, using the �nite horizon hypothesis).

Although the focus of the paper has been kept on complete information for inter-

pretative and notational easiness, the methodology can be applied also to dynamic

games with incomplete information. In an incomplete information environment, play-

ers reaching an agreement at the interim stage may reveal their types in the bargaining

process or not. In the �rst case, �rst-order-beliefs restrictions could be extended to

41And these outcomes are all induced by a mixed rationalizable Nash, an important feature if one
wants to go on proving implementability with probabilistic agreements.
42I conjecture that the result holds for all extensive form games with perfect recall.
43While � denotes a cartesian product,

Q
will always denote an algebraic product.
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payo¤-relevant types. In the second case, what the agreement suggests about co-

players types would be embodied in the rationalizability procedure.

Finally, there are two complementary issues, already investigated in the literature,

to which this analysis could be pro�tably connected. The �rst is the pre-play bargain-

ing issue. This paper sheds light on which agreements are self-enforcing and which

outcomes are implementable through agreements. How will players ultimately choose

among them? Welfare considerations and a theory of bargaining could re�ne the

answer. Dufwenberg, Servátka and Vadovic [16] propose an interesting approach to

the pre-play bargaining issue. Miller and Watson [25], instead, analyze a problem of

bargaining between players who can reach an agreement at every stage of a repeated

game. When players can communicate during the game, the second issue is renegotia-

tion proofness (see, for instance, [17]). Past moves and consequent forward induction

considerations could in�uence the bargaining power of players in renegotiation.

6 Appendix

Additional notation (for a subgame �(h) of � =


I;H; (ui)i2I

�
).

Histories of �(h) are identi�ed for convenience by the histories of � following h,

and not rede�ned as shorter lists of action pro�les occuring after h.

� For any h 2 H and i 2 I:

�Hh := feh 2 H : eh � hg, Zh := fz 2 Z : z � hg;
�Shi is the set of all strategies s

h
i :
eh 2 Hh 7! ai 2 Ai(eh) of �(h).

� for any J � I, z 2 Hh [ Zh, bh 2 Hh and subsets of strategies (S
h

j )j2I :

�S
h

J(z), S
h

J [
bh], H(ShJ), �Hh

(Sh�i), �(�), r(�) and �(�) are de�ned like in �;

�Di(S
h
) := feh 2 H : 9h 2 H(Sh);9ai 2 Ai(h)nS

h

i [h];9a�i 2 S
h

�i[h];
eh=(h; (ai; a�i))g;44

� for any (shj )j2I 2 Sh, (s
bh
j )j2I 2 S

bh, �hi 2 �Hh
(Sh�i), e�bhi 2 �H

bh
(S

bh
�i) and bH � Hbh:

� shi jbh is the restriction of shi to Hbh, shJ jbh := (shj jbh)j2J , ShJ jbh := (eshJ jbh)eshJ2ShJ ;
44Set of histories that follow a unilateral deviation by player i from the histories induced by S

h
.
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� br(�hi ;bh) is the set of continuation best replies to �hi (�jbh);
� shJ =

bH sbhJ if for every eh 2 bH, shJ(eh) = sbhJ(eh); Sh;sbhJJ; bH := feshJ 2 ShJ : eshJ = bH sbhJg;
��hi =

bH e�bhi if for every eh 2 bH and ez � p(ez) 2 bH\Heh, �hi (Sh�i(ez)jeh)=e�bhi (Sbh�i(ez)jeh);
� shJ =

bh sbhJ and �hi =bh e�bhi if, respectively, shJ =Hbh
s
bh
J and �

h
i =

H
bh e�bhi .

I will often use the fact that = bH is transitive and that if �hi = bH e�bhi and eH � bH,
then �hi =

eH e�bhi .45 Moreover, note that by CPS-3 (with bh as "intermediate" history):46
� if eH\Hbh = ;, p(bh) 2 eH, �hi = eH e�hi , �hi = bH e�bhi and e�hi = bH e�bhi , then �hi = eH[ bH e�hi .
Rewrite selective rationalizability as (S0i ; :::; S

M
i ; S

0
i;R�e ; S

1
i;R�e ; :::)i2I , where ((S

q
i )i2I)q�0

is strong rationalizability and M is the smallest q 2 N such that Sq = Sq+1 = S1 (it

exists by �niteness of the game).

In a subgame, substrategies can be eliminated "exogenously" and not because

they are not sequential best replies to any valid conjecture in the subgame. On the

other hand, substrategies can survive even if the opponents do not reach the subgame

anymore. Thus I de�ne the following.

De�nition 11 Fix h 2 H. A reduction procedure is a sequence ((Shi;q)i2I)q�0 where:

� for every i 2 I, Shi;0 = Shi ;

� for every n > 0 and shi 2 Shi;n, shi 2 Shi;n�1 and there exists �hi 2 �Hh
(Sh�i) s. t.:

� shi 2 �(�hi );

� for every q < n and eh 2 Hh, if Sh�i;q(eh) 6= ;, then �hi (Sh�i;qjeh) = 1.
Let M be the smallest q 2 N such that Shq = Shq+1 and let S

h
i;1 := Shi;M (it

exists by �niteness). Note that even if Sh�i;n�1 is empty, S
h
i;n needs not be empty.

Still, for semplicity I will say that shi 2 Shi;n is justi�ed by a �hi that strongly believes
(henceforth, t.s.b.) (Sh�i;q)

n�1
q=0 . The de�nition of reduction procedure encompasses

45These properties clearly hold also when = bH applies between strategies.
46By CPS-3, for every eh 2 eH and ez � p(ez) 2 bH\Heh, �hi (Sh�i(ez)jeh) = �hi (Sh�i(bh)jeh)�hi (Sh�i(ez)jbh) =e�hi (Sh�i(bh)jeh)e�bhi (Sbh�i(ez)jbh) = e�hi (Sh�i(bh)jeh)e�hi (Sh�i(ez)jbh) = e�hi (Sh�i(ez)jeh).
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both strong-�-rationalizability and selective rationalizability (rewritten as before)

and their implications in the subgames. Indeed, if ((Shi;q)i2I)q�0 is a reduction proce-

dure, ((Shi;q(bh)jbh)i2I)q�0 is a reduction procedure for any bh 2 Hh.

Some lemmata claim the survival of strategies, or conjectures over such strategies,

which combine substrategies that have survived by assumption. The reason why such

lemmata are needed is merely the following. Fix bshi ; shi 2 Shi;n and bh; h 2 H(bshi )\H(shi )
such that h 6� bh 6� h: there needs not exist shi 2 Shi;n(bh) \ Shi;n(h) such that shi jbh =
shi jbh and shi jh = bshi jh. The intuitive reason is the following: player i may allow bh
and h either because she is con�dent that bh will be reached and she has certain
expectations after bh, or because she is con�dent that h will be reached and she has
certain expectations after h. If bshi is best reply to the �rst conjecture and shi is
best reply to the second conjecture, bshi jh and shi jbh may be "emergency plans" for an
unpredicted contingency, after which the expectations would not have justi�ed the

choice to allow h and bh in the �rst place.
I start with a lemma about the combination of substrategies. Consider a player

who may be surprised by history bh, in the sense that she may play a strategy that
allows bh while believing that the co-players do not until bh is actually reached. This
player can keep the same beliefs and the same strategy out of �(bh), whatever she
believes the co-players would do and hence however she may play after bh. Being a
rather intuitive result, the proof is relegated to the Online Appendix.

Lemma 1 Fix a reduction procedure ((Shi;q)i2I)q�0, i 2 I, n 2 N, bh 2 Hh and �hi 2
�Hh

(Sh�i) t.s.b. (S
h
�i;q)

n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi ), �

bh
i t.s.b.

(Sh�i;q(
bh)jbh)n�1q=0 and s

bh
i 2 �(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi t.s.b. (Sh�i;q)n�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) =

�hi (�jeh), and eshi 2 �(e�hi ) (so that �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
PROOF OF THEOREMS 1 AND 3

Fix a set of outcomes and call bH the set of histories of �(h) that precede them.

Suppose that �hi =
bH �hi and that the co-players are not expected to deviate outside

of bH, i.e. they are expected to play compatibly with some of those outcomes at every
history in bH. If also the sequential best replies to �hi and the sequential best reply to
�hi do not deviate outside of bH, then they mimic each other inside of bH.
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Lemma 2 Fix l 2 I, h 2 H and bZ � Zh. Let bH := feh 2 Hh : 9z 2 bZ;eh � zg. Fix
�hl =

bH �hl such that for every e�hl 2 f�hl ; �hl g:
�(e�hl ) � feshl 2 Shl : 8eh 2 bH \H(eshl );8esh�l 2 Suppe�hl (�jeh); H(eshl ; esh�l) � bHg: (A0)

Then for every shl 2 �(�hl ) there exists shl 2 �(�hl ) such that shl =
bH shl .

Proof. Fix shl 2 �(�hl ). For every eh 62 bH and h � eh, h 62 bH. Hence there exists
shl =

bH shl such that for every eh 62 bH, shl 2 br(�hl ;eh).
Fix eh 2 H(shl ) \ H(�(�hl )) \ bH and eshl 2 �(�hl )(

eh). For every h � h � eh,
h 2 bH. Then, since shl = bH shl , eh 2 H(shl ). Hence s

h
l 2 br(�hl ;eh) and for every

sh�l 2 Supp�hl (�jeh), by A0 H(shl ; sh�l) � bH; so, since shl = bH shl , �(shl ; sh�l) = �(shl ; sh�l).
Thus shl 2 br(�hl ;eh) too and for every z 2 �(fshl g � Supp�hl (�jeh)) =: Z, p(z) 2 bH;
so by �hl =

bH �hl , �
h
l (S

h
�l(z)jeh) = �hl (S

h
�l(z)jeh) =: �(z). Then shl induces the same

probability distribution (�(z))z2Z
47 with �hl (�jeh) and �hl (�jeh) over Zh. For every esh�l 2

Supp�hl (�jeh), by A0 H(eshl ; esh�l) � bH. Thus for every z 2 �(feshl g � Supp�hl (�jeh)) =: eZ,
p(z) 2 bH; so by �hl = bH �hl , �hl (Sh�l(z)jeh) = �hl (S

h
�l(z)jeh) =: �(z). Then eshl induces

the same probability distribution (�(z))z2 eZ with �hl (�jeh) and �hl (�jeh) over Zh. Hence,
since shl 2 br(�hl ;eh) and eshl 2 br(�hl ;eh), eshl 2 br(�hl ;eh) and shl 2 br(�hl ;eh) too.
So for every eh 2 H(shl )\H(�(�hl )), shl 2 br(�hl ;eh). I show that H(shl )nH(�(�hl )) =

;, so that shl 2 �(�hl ). Suppose not. Then there exists bh 2 H(shl )nH(�(�hl )) such that
p(bh) 2 H(shl ) \ H(�(�hl )). But since shl 2 br(�hl ; p(bh)), from the observation about

the relationship between continuation and sequential best replies in Section 3, I can

deduce that bh 2 H(�(�hl )) too. �
From now on, whenever �hl =

bH �hl , there will exist a set of outcomes such that bH
is the set of histories of �(h) that precede them.

Lemma 3 deals with a similar situation as in Lemma 1, but from the perspective

of the deviator. If the co-players may be surprised by di¤erent deviations from the

same predicted behavior, the deviator can expect any combination of reactions. The

Lemma is less general to target the particular setting in which it will be used. The

Lemma is rather intuitive and the proof is mostly a tedious book-keeping exercise.

Therefore, it is relegated to the Online Appendix.

47The probability distribution over Z induced by a strategy shi 2 Shi (
eh) with �hi (�jeh) is

(�hi (S
h
�i(z)jeh))z2�(fshi g�Sh�i(eh)) (and probability 0 to every z 62 �(fshi g � Sh�i(eh))).
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Lemma 3 Fix a red. procedure ((eShi;q)i2I)q�0, subsets of strategies (Shi )i2I , m 2 N
and l 2 I. Let HS := H(S

h
) and DS := Dl(S

h
). For every i 6= l, suppose that there

exists a map �hi : S
h

i ! �Hh
(Sh�i) such that for every s

h
i 2 S

h

i , �
h
i (s

h
i ) s.bel. S

h

�i, and:

A1 there exist maps �hi : S
h

i ! �Hh
(Sh�i) and s

h
i : S

h

i ! Shi such that for every s
h
i 2

S
h

i , �
h
i (s

h
i ) =

HS
�
h
i (s

h
i ) strongly bel. (eSh�i;q)m�1q=0 and �(�

h
i (s

h
i )) 3 shi (shi ) =H

S
shi ;

A2 for every shi 2 S
h

i and �
h
i =

HS
�
h
i (s

h
i ) t.s.b. (eSh�i;q)m�1q=0 , �(�

h
i ) � eShi;m.

Fix �hl t.s.b. (eSh�l;q)mq=0 and �i6=l(shi (shi ))shi 2Shi . Fix eD � DS and for every bh 2 eD,
�x e�bhl t.s.b. (eSh�l;q(bh)jbh)mq=0. Let H� := Hhn [bh2 eD Hbh.
There exists e�hl =H�

�hl t.s.b. (eSh�l;q)mq=0 such that for every bh 2 eD, e�hl =bh e�bhl .
For future reference, note that every �hi t.s.b. (eSh�i;q)1q=0 and H(eSh1) satisfy A0.
Fix a set of strategy pro�les S

h
delivered by a reduction procedure. Suppose that

until step n, each player i is willing to play strategies that mimic those in S
h

i along

the paths induced by S
h
while expecting the co-players to do the same. At step n+1,

instead, some player l stops playing any strategy of hers that mimics a strategy bshl
in S

h

l . Since at n the co-players may be surprised by any deviation, player l might

expect them to play any combination of substrategies that survive n steps after the

potential deviations. Hence, there must exist one particular deviation that player l

prefers to mimicking bshl whatever she may conjecture thereafter.
Lemma 4 Fix reduction procedures ((S

h

i;q)i2I)q�0 and ((S
h
i;q)i2I)q�0. For every i 2 I

call S
h

i := S
h

i;1 and let �hi : S
h

i ! �Hh
(Sh�i) be a map such that for every s

h
i 2 S

h

i ,

�
h
i (s

h
i ) strongly believes (S

h

�i;q)
1
q=0 and s

h
i 2 �(�

h
i (s

h
i )) (so that (S

h

n)n�0 satis�es A1

with �hi (�) = �
h
i (�)). Let HS := H(S

h
). Fix n 2 N, l 2 I and bshl 2 Shl such that:48

A3 for every i 2 I and m � n, (Shq )q�0 satis�es A1;

A4 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A5 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A6 for every shl =
HS bshl and �hl =HS

�
h
l (bshl ) t.s.b. (Sh�l;q)nq=0, shl 62 �(�hl ).

48A3, A4 and A5 need not hold for i = l to claim Lemma 3 and prove this Lemma. However, l
has been included to reuse A3, A4 and A5 in the �nal proof of the theorems.
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Let DS := Dl(S
h
). For every bh 2 DS and m 2 N call Mbh

m (resp. M
bh
m) the set of

�
bh
l t.s.b. (S

h
�l;q(

bh)jbh)mq=0 (resp. (Sh�l;q(bh)jbh)mq=0) such that there exist Hbh � H
bh andb�bhl =Hbh �bhl t.s.b. (Sh�l;q(bh)jbh)nq=0 which satisfy A0.49

Then there exists bh 2 DS such that for every m � n, p 2 N and (�bhl ; e�bhl ) 2
M

bh
m �M

bh
p , there exist (1) �

h
l =

HS
�
h
l (bshl ) t.s.b. (Sh�l;q)mq=0 and (2) e�hl =HS

�
h
l (bshl )

t.s.b. (S
h

�l;q)
p
q=0 such that �

h
l =

bh �bhl , e�hl =bh e�bhl and �(�hl )(bh) 6= ; 6= �(e�hl )(bh).
Proof. Suppose by contraposition that there is a partition (D;D) of DS such

that for every bh 2 D there exist m(bh) � n and �bhl 2 Mbh
m(bh) that violate 1, and for

every bh 2 D there exist m(bh) 2 N and �bhl 2 Mbh
m(bh) that violate 2. For every bh 2 DS

�x corresponding b�bhl and Hbh. Write D = fh1; :::; hkg where m(h1) � ::: � m(hk). Let
�
h
l := �

h
l (bshl ).

Fix any �hl =
HS
�
h
l t.s.b. (S

h
�l;q)

n
q=0 and �i6=l(shi (shi ))shi 2Shi (one clearly exists); let

H� := Hhn [bh2DS H
bh; by Lemma 3 there exist:

� e�hl =H�
�hl =

HS
�
h
l t.s.b. (S

h
�l;q)

n
q=0 such that for every bh 2 DS, e�hl =bh b�bhl ;

� for every bh 2 D, e�h
l;bh =H�

�hl =
HS
�
h
l t.s.b. (S

h
�l;q)

m(bh)
q=0 such that e�hl;bh =bh �bhl =Hbhb�bhl and for every eh 2 DSnfbhg, e�h

l;bh =eh b�ehl , so that by �, e�hl;bh =Hhn(HbhnHbh) e�hl ;
Let e�hl;0 := �hl =: �hl and eH := [bh2DHbh [HS; by Lemma 3 there exist:

� for every 1 � j � k, e�hl;j =Hhn[jt=1Hht

�
h
l t.s.b. (S

h

�l;q)
m(hj)
q=0 such that for every

1 � t � j, e�hl;j =ht �htl =Hht b�htl ; so by �, e�hl;j =HhnHhj e�hl;j�1 and e�hl;k = eH e�hl .
Fix bh 2 D and let bH := Hhn(HbhnHbh): e�hl and bH satisfy A0 because e�hl =bh b�bhl ;50e�h

l;bh and bH satisfy A0 because by the contrapositive hypothesis �(e�h
l;bh)(bh) = ;. Then

by Lemma 2 �(e�hl )(bh) = ; too.51 So H(�(e�hl )) \D = ;.
Now I show inductively that H(�(e�hl;k)) \ DS = ;. Fix 1 � j � k and suppose

that H(�(e�hl;j�1))\DS = ;, which is true for j = 1 because �(�hl ) � S
h

l . Hence e�hl;j�1
49Note that: b�bhl refers to the second procedure even when �bhl refers to the �rst; �bhl and Hbh need

not satisfy A0.
50The sequential best replies to e�hl that reach bh, obviously mimic those to b�bhl after bh.
51Player l expects the same payo¤ against e�h

l;bh and e�hl without reaching bh and a non-higher payo¤
against e�hl after reaching bh. Hence, since she does not want to deviate under e�hl;bh, she does not want
to deviate under e�hl .
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and HhnHhj satisfy A0; e�hl;j and HhnHhj satisfy A0 because by the contrapositive

hypothesis �(e�hl;j)(hj) = ;; then by Lemma 2 H(�(e�hl;j)) \ DS = ; too. Inductively,
H(�(e�hl;k)) \DS = ;.
Hence, e�hl;k and eH satisfy A0; e�hl and eH satisfy A0 because H(�(e�hl ))\D = ; and

for every bh 2 D, e�hl =bh b�bhl ; then by Lemma 2 H(�(e�hl )) \DS = ; too. Hence e�hl and
HS satisfy A0; �hl and H

S satisfy A0. So by Lemma 2 there exists shl 2 �(e�hl ) such
that shl =

HS bshl , violating A6. �
Proof of Theorem 1 and 3.
The idea is the following. Take the set delivered by strong-�-rationalizability or

selective rationalizability for a given path agreement. Suppose that at some step n

of the same procedure for a looser agreement or of the alternative procedure for the

same agreement, a player l excludes to mimic a strategy of the set for some pro�table

deviation outside the histories induced by the set. More precisely, at step n of the

second procedure A3 and A6 are satis�ed. The absence of o¤-the-path restrictions

allows to claim A4 and A5 and apply Lemma 4 (�rst statement), which together with

Lemma 1 implies that both deviator and co-players will play at step n of the second

procedure any sequential best reply to any CPS in the subgame. But then, with a

reduction procedure, I can �nd an set of strategy pro�les of the subgame which should

have survived also in the �rst procedure, a contradiction. To prove this last statement,

I can apply the same logics, using as second procedure the implications in the subgame

of the �rst procedure and as �rst procedure the new reduction procedure. For the

latter, A5 holds by construction, for the former A4 holds by the previous application

of Lemma 4 (second statement). Thus, the problem is recursive and ends when the

post-deviation subgame, by �niteness, is just a simultaneous moves game.

The same reasoning applies when the �rst procedure refers to a looser agreement

and the second procedure to the path agreement in case the �rst procedure implements

the path, so that the set it yields is compatible with the path restrictions.

Technically, the proof shows that A3, A4, A5 and A6 cannot hold together also

for player l, in this particular structure, because otherwise the second statement of

Lemma 4 would hold non vacously for every p 2 N, which contradicts bh 2 DS.

So, let (Sq)1q=0 be strong-�-rationalizability or selective rationalizability for a path

agreement e on z 2 Z. Let (Sq)1q=0 be any of the two for e or a looser agreement e0. I
show that �(S1) � �(S1). Thus, �(S1R�e) � �(S1�e) and �(S1R�e) � �(S1�e) (Theorem
1) and �(S1e0 ) � �(S1e ). Vice versa, let (Sq)1q=0 apply to e0 and (Sq)1q=0 to e. I show
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that if �(S1) = z, still �(S1) � �(S1), so �(S1e0 ) � �(S1e ) and Theorem 3 holds.

The proof of �(S1) � �(S1) is common to all cases (see the next two footnotes).
To better understand the proof, I suggest to read it �rst for k = 0, second for k = 1,

and third for k = 2: for k > 2 the logics are the same as for k = 2.

Let S1 6= ;, otherwise the inclusion is trivially veri�ed. Set k = 0. For notational
convenience, hk will be substituted by just k in subscripts and superscripts.

RECURSIVE STEP k

If k = 0, h0 is the root of the game. If k > 0, hk is de�ned in Recursive Step k�1.
If k = 0, let (S

0

q)
1
q=0 := (Sq)

1
q=0; else, (S

k

q)
1
q=0 is de�ned in Recursive Step k � 1.

If k = 0, let (S0q )
1
q=0 := (Sq)

1
q=0; else, let (S

k
q )
1
q=0 := (S

k�1
q (hk)jhk)1q=0.

For every i 2 I, let �ki : S
k

i;1 ! �Hk
(Sk�i) be a map such that for every s

k
i 2 S

k

i;1,

�
k
i (s

k
i ) strongly believes (S

k

�i;q)
1
q=0, s

k
i 2 �(�

k
i (s

k
i )), and, if k = 0, �

0
i (s

0
i ) 2 �e

i .
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I prove by induction that �(S
k

1) � �(Sk1).
Premise (k=0): for every n 2 N, i 2 I, si 2 Si;1.and �i =H(S1) �

0
i (si) t.s.b.

(S�i;q)
n
q=0 or (S�i;q)

n
q=0, by �

0
i (si) 2 �e

i , �
0
i (si)(S�i(z)jh0) = 1, so �i(S�i(z)jh0) = 1.

Thus �i 2 �e
i � �e0

i . So A4 and A5 hold.

Premise (k>0): A4 holds by Fact k � 1. A5 holds by Claim k � 1. (To be read
in Recursive step k � 1 with k and k � 1 in place of k + 1 and k)
Inductive Hypothesis (n): (Skq )

1
q=0 satis�es A3 at n (so by A4 �(S

k
n) � �(S

k

1)).

Basis step (1): for every i 2 I, the I.H. holds with �ki (�) = �
k
i (�).

Inductive step (n+1).
Suppose by contradiction that the Inductive Hypothesis does not hold at n + 1.

Then A6 holds for some l 2 I and bskl 2 S
k

l;1. Lemma 4 yields h
k+1 2 Dl(S

k

1).

If �(hk) has depth53 1, hk+1 cannot exist and we have the desired contradiction

(Exit Rule). Else, de�ne ((S
k+1

i;q )i2I)q�0 as follows: for every i 2 I and m � n,

S
k+1

i;m = Ski;m(h
k+1)jhk+1; for every m > n, sk+1i 2 Sk+1i;m if and only if there exists �k+1i

t.s.b. (S
k+1

�i;q)
m�1
q=0 such that s

k+1
i 2 �(�k+1i ).

For every i 6= l, since hk+1 2 Dl(S
k

1), ; 6= S
k

i;1(h
k+1) 3 bski . For every m � n,

the I. H. provides ski (bski ) 2 Ski;m(hk+1) 6= ; and �ki (bski ) =H(Sk1) �ki (bski ) t.s.b. (Sk�i;q)m�1q=0

such that �ki (bski )(Sk�i(hk+1)jp(hk+1)) = 0. Hence, by Lemma 1, for every �k+1i t.s.b.

52In case (Sq)1q=0 = (S
q
e0)

1
q=0, I assumed S�i;1 � S�i(z); hence, for every �i t.s.b. S�i;1, �i 2 �ei .

53The di¤erence between the lenght T of the longest path (a1; :::; aT ) � h and the lenght of h.
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(S
k+1

�i;q)
m�1
q=0 , there exists �

k
i =

k+1 �k+1i t.s.b. (Sk�i;q)
m�1
q=0 such that �ki =

H(S
k
1) �

k
i (bski )

and �(�ki )(h
k+1) 6= ;. By A4 �(�ki ) � Ski;m. So �(�k+1i ) � Sk+1i;m .

Fix �k+1l t.s.b. (S
k+1

�l;q)
n
q=0: trivially �

k+1
l 2 Mk+1

n . Hence by Lemma 4 (1) there

exists e�kl =H(Sk1) �kl (bskl ) t.s.b. (Sk�l;n)nq=0 such that e�kl =k+1 �k+1l and �(e�kl )(hk+1) 6= ;.
By A4, �(e�kl ) � Skl;n. So �(�k+1l ) � Sk+1l;n 6= ;.
Hence for every i 2 I and �k+1i t.s.b. (S

k+1

�i;q)
n
q=0, �(�

k+1
i ) � S

k+1

i;n 6= ;, so that
S
k+1

i;n � Sk+1i;n+1 and ((S
k+1

i;q )i2I)q�0 is a reduction procedure with S
k+1

1 6= ;.
For everym � n and b�k+1l t.s.b. (S

k+1

�l;q)
1
q=0, �x �

k+1
l =H(S

k+1
1 ) b�k+1l t.s.b. (S

k+1

�l;q)
m�1
q=0 .

Since b�k+1l and H(S
k+1

1 ) satisfy A0, by Lemma 4 (1) there exists e�kl =H(Sk1) �kl (bskl )
t.s.b. (Sk�l;q)

m�1
q=0 such that e�kl =k+1 �k+1l and �(e�kl )(hk+1) 6= ;. By A4, �(e�kl ) � Skl;m.

So �(�k+1l ) � Sk+1l;m .

Then, for every m 2 N, i 2 I, b�k+1i t.s.b. (S
k+1

�i;q)
1
q=0 and �

k+1
i =H(S

k+1
1 ) b�k+1i t.s.b.

(S
k+1

�i;q)
m�1
q=0 , �(�

k+1
i ) � Sk+1i;m . (Claim k)

If �(S
k+1

1 ) � �(Sk1), then hk+1 2 H(S
k

1), the desired contradiction to claim that

the I. H. holds for n + 1. The goal of Recursive Step k + 1 is precisely to prove

�(S
k+1

1 ) � �(Sk1). Before, observe what follows.
For every i 6= l, m 2 N and �k+1i t.s.b. (S

k

�i;q(h
k+1)jhk+1)m�1q=0 , by Lemma 1

there exists e�ki =k+1 �k+1i t.s.b. (S
k

�i;q)
m�1
q=0 such that for every eh 62 Hk+1, e�ki (�jeh) =

�
k
i (bski )(�jeh) and �(e�ki )(hk+1) 6= ;.54 By A5, �(e�ki ) � Ski;m.
For everym 2 N and b�k+1l t.s.b. (S

k+1

�l;q)
1
q=0, �x �

k+1
l =H(S

k+1
1 ) b�k+1l t.s.b. (S

k

�l;q(h
k+1)jhk+1)m�1q=0 .

Since b�k+1l and H(S
k+1

1 ) satisfy A0, by Lemma 4 (2) there exists e�kl =H(Sk1) �kl (bskl )
t.s.b. (S

k

�l;q)
m�1
q=0 such that e�kl =k+1 �k+1l and �(e�kl )(hk+1) 6= ;. By A5 �(e�kl ) � Skl;m.

Then, for every m 2 N, i 2 I, b�k+1i t.s.b. (S
k+1

�i;q)
1
q=0 and �

k+1
i =H(S

k+1
1 ) b�k+1l t.s.b.

(S
k

�l;q(h
k+1)jhk+1)m�1q=0 , �(�

k+1
i ) � Ski;m(hk+1)jhk+1. (Fact k)

Note that the Exit Rule must be veri�ed at some k, because the game has �nite

depth. Then �(S
k

1) � �(Sk1), the desired contradiction to claim that �(S
k�1
1 ) �

�(Sk�11 ). Proceding backwards, we obtain �(S1) � �(S1). �

The proof can be employed also to show an interesting relationship between strong

rationalizability, which can be seen as strong-�-rationalizability under the loosest

possible agreement, and strong-�-rationalizability. The latter does not in general

deliver a subset of the former in terms of strategy pro�les, nor in terms of outcomes.

Yet, it does deliver a subset of outcomes when at the end of the procedure, there is no

54Recall that: �
k
i (s

k
i ) s.b. (S

k

�i;q)
1
q=0; �

k
i (s

k
i )(S

k
�i(h

k+1)jp(hk+1)) = 0 ; ski 2 �(�
k
i (s

k
i ))(h

k+1) 6= ;.
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restriction left o¤ the induced paths. For coherency with the framework, restrictions

are expressed here in terms of an agreement, but the result holds through for more

general restrictions (such as those deriving from an outcome distribution).

Remark 7 Fix an agreement e = (ei)i2I . If for every h 62 H(S1�e) and i 2 I,

ei(h) = ;, then �(S1�e) � �(S1).

PROOF OF THEOREMS 2 AND 6.
The proofs of theorems 2 and 6 are applications of Lemma 10, which is based on the

following idea. For simplicity, think of SPE and equilibria in pure strategies. When

I say that a SPE survives/is eliminated I mean that an equilibrium which induces

the SPE path survives/is eliminated. Fix a reduction procedure and a collection of

unordered subgames, each with an associated SPE, such that until step m: (A1) the

associated SPE survive; (A2) the subgames follow unilateral deviations from equilibria

which survive m� 1 steps (used in next paragraph); (A3) players save the sequential
best replies to CPS�s against which they yield in expectation at least the payo¤ of a

SPE in the class of SPE that induce in the subgames the associated SPE. I show that

a SPE in the restricted class survives until step m. Suppose not. Take one of the

SPE in the class that survive more steps, say n � 1. There is a unilateral deviation
from its path that the deviator takes at n whatever she conjectures thereafter. This

is proved in Lemma 8, which resembles Lemma 4. The same holds for the co-players

since they can be surprised by the deviation. But then (see next paragraph), in the

new post-deviation subgame some SPE in the class of SPE that induce in the smaller

old subgames the associated SPE survives until step n. Since the new subgame

cannot coincide with or be contained in an old subgame (also shown in Lemma 8),

substituting the smaller old subgames with the new subgame, the new class of SPE

is smaller than the �rst. Then, iterating, m weakly decreases. So A1,2,3 still hold.

Since the subgames keep enlarging, I obtain a contradiction.

I still need to prove that a SPE of the new subgame in the restricted class survives

until step n. Suppose not. However the surviving substrategies feature an equilibrium

of the subgame which induces the equilibria of the smaller old subgames (I prove this

inside Lemma 10 using A1, A2 and the fact that players save all the sequential best

replies to CPS�s at step n). There is a unilateral deviation from the equilibrium path

which the deviator takes if in the post-deviation subgame she expects at least the

payo¤ of a SPE in the class of SPE that induce in the smaller old subgames the
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associated SPE. This is proved in Lemma 9 which is the dual of Lemma 8. The same

holds for the co-players since they can be surprised by the deviation. This yields A3

for the new post-deviation subgame: suppose that the survival of a SPE of the new

subgame in the restricted class has been proved inductively on the depth of subgames.

Since the new subgame cannot coincide with or be contained in an old subgame (also

shown in Lemma 9), substituting the smaller old subgames with the new subgame,

the new class of SPE is smaller than the �rst. Then, iterating, the contrapositive

hypothesis still holds. Since the subgames keep enlarging, I obtain a contradiction.

In the proof of Lemma 10, the two iterative procedures described above constitute

the outer and the inner recursive proofs for the inductive step. I will always refer to

uncorrelated CPS�s55 and distributions.

Additional notation:
Fix h � bh, i 2 J � I, �hi 2 �Hh

(Sh�i), (e�hj )j2I 2 �j2I�(Shj ), (�bhj )j2I 2 �j2I�(Sbhj ):
� e�hJ(�) 2 �(ShJ ) is the product of the marginal distributions (e�hj )j2J ;56
� H(e�hJ) := H(Suppe�hJ), e�hJ [bh] := (Suppe�hJ)[bh], Di(e�h) := Di(Suppe�h);
� e�hJ jbh is the product of (e�hj jbh)j2J and e�hi jbh 2 �(Sbhi ) is def. for every sbhi 2 Sbhi as

� (e�hi jbh)(sbhi ) = e�hi (fshi 2 Shi (bh) : shi jbh = sbhi g)=e�hi (Shi (bh)) if bh 2 H(e�hi ),
� (e�hi jbh)(sbhi ) = e�hi (fshi 2 Shi : shi jbh = sbhi g) else;

� e�hJ =� �bhJ if for every z � bh with p(z) 2 H(�bh) and j 2 J , (e�hj jbh)(Sbhj (z))=�bhj (Sbhj (z));57
� e�hJ =bh �bhJ if for every z � bh and j 2 J , (e�hj jbh)(Sbhj (z)) = �bhj (Sbhj (z));
� �hi =� �

bh
�i if �

h
i (�jbh) =� �bh�i; �hi =bh �bh�i if �hi (�jbh) =bh �bh�i;

� �i(e�h) is i�s exp. payo¤under e�h; �(e�h�i) := maxeshi 2Shi Psh�i2Suppe�h�i ui(�(eshi ; sh�i))e�h�i(sh�i);
� e�h�ijbh � �bh�i if �(e�h�ijbh) � �(�bh�i); �hi � e�h�i if �hi (�jh) � e�h�i;

55A CPS �hi is uncorrelated if for every eh 2 Hh, �hi (�jeh) = �j 6=iMargShj �hi (�jeh)
56This is an exception to the rule of subscripts: e�hJ is not a (sub-)pro�le of distributions but

an uncorrelated joint distribution. Equilibria (e�hj )j2I will be represented as the joint uncorrelated
distribution e�h they induce, and then e�hJ := MargShJ e�h.
57Notice that z is not necessarily a terminal history. Notice also that only the histories whose

predecessor is induced with positive probability by �bh and not all those compatible with �bhJ matter.
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� e�h is a SPE of �(h) if for every eh 2 Hh, e�hjeh is an equilibrium of �(eh);
� for any set of unordered58 non-terminal histories eH � H and any set of SPE

�
eH = (�eh)eh2 eH of the corresponding subgames, Eh(� eH) is the set of SPE of �(h)

�h such that for every eh 2 eH \Hh, �hjeh = �eh.
I will often use the fact that =� and =bh are transitive and that =bh implies =�.59

Moreover note that when e�hi =� �bhi :
~ for every eh � bh with p(eh) 2 H(�bh) and bh � h � eh, (e�hi jh)(Shi (eh)) = (�bhi jh)(Shi (eh));60
� if for every j 6= i and eh 2 Dj(�

bh), e�hi jeh = �bhi jeh, then e�hi =bh �bhi .61
When �bh is an equilibrium and e�h =bh �bh, I will often use the fact that for everyeh 2 H(�bh), e�hjeh is an equilibrium. Moreover:
� if e�bh�i =� �bh�i, �(e�bh�i) � �(�bh�i) = �i(�bh) and if e�bh is an equil., �(e�bh�i) = �(�bh�i);62
| if �bhi =bh �bh�i, for every sbhi 2 Supp�bhi , there is esbhi 2 �(�bhi ) such that esbhi =H(�bh) sbhi .63
For the next �ve Lemmata, �x n 2 N, h 2 H, a red. procedure (Shq )q�0 and e�h 2

�(Shn�1). Let H
� := H(e�h). For every i 2 I, let Di := Di(e�h) and D�i := [j 6=iDj.

The �rst Lemma, like in the proof of Lemma 3, combines di¤erent reactions of

player i to unexpected deviations from H�. Its proof is in the Online Appendix too.

Lemma 5 Fix v � n and i 2 I such that e�hi 2 �(r(e�h�i)) and for every �hi =� e�h�i
t.s.b. (Sh�i;q)

v�1
q=0, �(�

h
i ) � Shi;v. For every eh 2 D�i, �x b�ehi 2 �(Shi;v(eh)jeh). There existsb�hi 2 �(Shi;v) such that b�hi =� e�hi and for every eh 2 D�i, b�hi jeh = b�ehi .

58For every two histories h; h0 in the set, h 6� h0 and h0 6� h.
59This fact resembles the set monotonicity of = eH for CPS�s.
60The equivalent condition for CPS�s is incorporated in the de�nition of = bH . Here it can be

derived from the conjectures at bh because h is reached with positive probability.
61This is the analogous of � for CPS�s. Since e�hi =� �bhi , (e�hi jbh)(Sbhi (eh)) = �bhi (Sbhi (eh)). For every

z � eh, since e�hi jeh = �bhi jeh, (e�hi jeh)(Sehi (z)) = (�bhi jeh)(Sehi (z)). Together, (e�hi jbh)(Sbhi (z)) = �bhi (Sbhi (z)).
62The equivalent payo¤ relation for CPS�s was implied by �bhi =Hbh b�bhi where b�bhi and Hbh sati�ed

A0, but the latter condition instead of its implication for payo¤s was employed via Lemma 2.
63From the observation in Section 3 about the relationship between continuation and sequential

best replies. It is the analogous of Lemma 2 for equilibria, net of indi¤erences: if the CPS has an
initial equilibrium conjecture, there are sequential best replies that mimic the equilibrium strategies
within the histories that precede the equilibrium outcomes.
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For the next four lemmata suppose that e�h is an equilibrium and:

A0 for every v � n, i 2 I and �hi =� e�h�i t.s.b. (Sh�i;q)v�1q=0, �(�
h
i ) � Shi;v,

so that every i 2 I satis�es the hypotheses of Lemma 5.

Lemma 6 is a characterization of equilibrium which will turn out to be useful.

Since the arguments for it are standard, the proof is omitted.

Lemma 6 Fix (b�hi )i2I 2 �i2I�(Shi ): b�h is an equilibrium if and only if for every

h 2 H(b�h), i 2 I and ai 2 Ai(h)nb�hi [h], calling Hh
ai
:= (h; (ai; a�i))a�i2b�h�i[h],P

eh2Hh
ai
nZ
�(b�h�ijeh) � (b�h�ijh)(Sh�i(eh)) + P

z2Hh
ai
\Z
ui(z) � (b�h�ijh)(Sh�i(z)) � �i(b�hjh): (F)

Lemma 7 converts a condition on CPS�s into F for some related conjectures.

Lemma 7 Fix b�h =� e�h, h 2 H�, i 2 I, ai 2 Ai(h)nb�hi [h], bh 2 Hh
ai
nZ, v � n ande�bhi t.s.b. (Sh�i;q(bh)jbh)vq=0 such that (i) b�h�ijbh � e�bhi , (ii) for every eh 2 Hh
ai
n(Z [ fbhg),b�h�ijeh � �

eh
�i for some �

eh
�i 2 �(Sh�i;v(

eh)jeh), and (iii) for every �hi =� e�h�i t.s.b.
(Sh�i;q)

v�1
q=0, if �

h
i =

bh e�bhi , then �(�hi )(bh) = ;. Then F holds.

Proof. Let �bh�i := e�bhi (�jbh). By Lemma 5 there exists �h�i 2 �(Shv ) such that
�h�i =

� e�h�i, for every eh 2 Hh
ai
nZ, �h�ijeh = �

eh
�i and for every eh 2 DinHh

ai
, �h�ijeh =e�h�ijeh. Fix �hi =

h �h�i t.s.b. (Sh�i;q)
v
q=0 such that �

h
i =

bh e�bhi (one exists because
�hi (�jh) = �h�i implies �hi (�jbh)jbh = �h�ijbh = e�bhi (�jbh)).
For every eh 2 DinHh

ai
and z 2 Z such that z � eh, by the argument used for �,

�h�i(S
h
�i(z)) = e�h�i(Sh�i(z)). For every z 2 &(Suppe�h), by �h =� e�h, �h�i(Sh�i(z)) =e�h�i(Sh�i(z)). Hence every shi 62 Shi (bh) = [eh2Hh

ai

Shi (
eh) induces with �h�i and e�h�i (1) and

with �h�ijh and e�h�ijh (2) the same distribution over outcomes. By 1 and r(e�h�i)(h) 6= ;,
r(�h�i)(h) [ r(�h�i)(bh) 6= ;; by h � bh, r(�h�i)(h) 6= ;; by h 2 H(�h�i), �(�hi )(h) 6= ;;64
by �(�hi )(bh) = ;, br(�hi ; h)(bh) = ;; by �hi (�jh)jh = �h�ijh, r(�h�ijh)(bh) = ;; by 2,
�(�h�ijh) = �(e�h�ijh) = �i(e�hjh); thus,P

eh2Hh
ai
nZ
�(�

eh
�i) � (�h�ijh)(Sh�i(eh)) + P

z2Hh
ai
\Z
ui(z) � (�h�ijh)(Sh�i(z)) � �i(e�hjh):

64See the relationship between continuation and sequential best replies in Section 3.
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By e�h =� b�h, �i(e�hjh) = �i(b�hjh). By �h�i =� e�h�i =� b�h�i and ~, for every eh 2 Hh
ai
,

(�h�ijh)(Sh�i(eh)) = (b�h�ijh)(Sh�i(eh)). For each eh 2 Hh
ai
nZ, �eh�i � b�h�ijeh. So F holds. �

For the next two Lemmata, �x a set of unordered histories bH � Hh and a set of

SPE � bH = (�eh)eh2 bH such that:
A1 for every eh 2 bH, there exists an equilibrium e�eh =� �eh such that e�eh 2 �(Shn(eh)jeh).
Lemma 8 augments Lemma 4 for the simpler case in which S

h
is the support of a

SPE. If only until step n� 1 an equilibrium that mimics the SPE survives, at step n

one deviation is always strictly preferred to continuing as the equilibrium prescribes.

Lemma 8 Suppose that there exists �h 2 Eh(�
bH) such that e�h =� �h but there

is no equilibrium b�h 2 �(Shn) such that b�h =� �h. Then there exist l 2 I andbh 2 Dln([eh2 bHHeh) such that for every b�bh�l 2 �(Sh�l;n(bh)jbh), v � n and e�bhl � b�bh�l
t.s.b. (Sh�l;q(bh)jbh)vq=0, there exists e�hl =� e�h�l t.s.b. (Sh�l;q)v�1q=0 such that e�hl =bh e�bhl and
�(e�hl )(bh) 6= ; (so by A0 �(e�hl ) � Shl;v).
Proof. Suppose not. For every i 2 I and bh 2 Din([eh2 bHHeh) =: Di, �x b�bh�i, v(bh)

and e�bhi that violate the statement and let e�bh�i := b�bh�i.
By Lemma 5 there exists b�h 2 �(Shn) such that b�h =� e�h =� �h and for every

i 2 I, eh 2 bH [Di and bh 2 Di \Heh, b�h�ijbh = e�eh�ijbh. I show that b�h is an equilibrium,
a contradiction.

Fix h 2 H�, i 2 I and ai 2 Ai(h)ne�hi [h]. If there exists eh � h such that eh 2 bH,b�h =� �h =eh �eh =� e�eh, so by � b�h =eh e�eh; then b�hjh is an equilibrium, so by Lemma
6 ("only if") F holds. If Hh

ai
nZ � bH, for every bh 2 Hh

ai
nZ, b�h�ijbh = e�bh�i and by �,

�(e�bh�i) = �(�h�ijbh); by b�h =� �h, �i(b�hjh) = �i(�
hjh) and by ~, (b�h�ijh)(Sh�i(bh)) =

(�h�ijh)(Sh�i(bh)); so since �hjh is an equilibrium by Lemma 6 ("only if") F holds. If

Hh
ai
\ Di 6= ;, �x v := mineh2Hh

ai
\Di

v(eh) and bh := argmineh2Hh
ai
\Di

v(eh): for everyeh 2 Hh
ai
\Di, b�h�ijeh � e�ehi (�jeh) 2 �(Sh�i;v(eh)jeh) 6= ;65 and for every eh 2 Hh

ai
n(Z [Di),b�h�ijeh 2 �(Sh�i;v(eh)jeh); therefore by Lemma 7 F holds. Thus by Lemma 6 ("if"), b�h

is an equilibrium. �

Lemma 9 is the "dual" of Lemma 8: if an equilibrium has survived n steps but

it does not mimic a SPE (within a subset), then there is a deviation from one of the

65For every j 6= i, there is �hj =h e�h�j t.s.b. (Sh�l;q)n�1q=0 : by |, �(�hj )(eh) 6= ;; by A0 �(�hj ) � Shj;n.
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equilibrium paths that the deviator could take whenever thereafter she expects at

least the payo¤ of a SPE of the subgame (within a subset).

Lemma 9 Suppose that e�h 2 �(Shn) and for every eh 2 bH, e�h =eh e�eh, but there is
no �h 2 Eh(� bH) with e�h =� �h. Then there exist p 2 I and h 2 Dp(e�h)n([eh2 bHHeh)
such that for every �h 2 Eh(� bH), v � n and e�hp � �h�p t.s.b. (S

h
�p;q(h)jh)vq=0, there

exists e�hp =� e�h�p t.s.b. (Sh�p;q)v�1q=0 such that e�hp =h e�hp and �(e�hp)(h) 6= ; (so by A0
�(e�hp) � Shp;v).
Proof. Suppose not. For every i 2 I and bh 2 Din([eh2 bHHeh) =: Di, �x �

bh, v(bh)
and e�bhi that violate the statement.
Construct b�h =� e�h such that for every eh 2 [i2IDi [ bH and bh 2 [i2IDi \ Heh,b�hjbh = �

ehjbh 2 E
bh(� bH), and for every eh 62 [i2IDi such that p(eh) 2 H�, b�hjeh 2

E
eh(� bH). I show that b�h is an equilibrium such that for every eh 2 bH \H�, b� =eh �eh 2

E
eh(� bH). Then, by Lemma 6 ("only if") for every eh 2 H�, b�hjeh is an equilibrium,

and so b�h 2 Eh(� bH), a contradiction.
Fix h 2 H�, i 2 I and ai 2 Ai(h)ne�hi [h]. If there exists eh � h such that eh 2 bH,b�h =� e�h =eh e�eh =� �eh, so by � b� =eh �eh; then b�hjh is an equilibrium, so by Lemma

6 ("only if") F holds. If Hh
ai
nZ � bH, for every bh 2 Hh

ai
nZ, b�h�ijbh = �bh�i and by �,

�(�
bh
�i) = �(e�h�ijbh); by b�h =� e�h, �i(b�hjh) = �i(e�hjh) and by ~, (b�h�ijh)(Sh�i(bh)) =

(e�h�ijh)(Sh�i(bh)); so since e�hjh is an equilibrium by Lemma 6 ("only if") F holds. If

Hh
ai
\ Di 6= ;, �x v := mineh2Hh

ai
\Di

v(eh) and bh := argmineh2Hh
ai
\Di

v(eh): for everyeh 2 Hh
ai
\Di, b�h�ijeh � e�ehi (�jeh) 2 �(Sh�i;v(eh)jeh) 6= ;66 and for every eh 2 Hh

ai
n(Z [Di),b�h�ijeh � e�eh 2 �(Sh�i;v(eh)jeh); hence by Lemma 7 F holds. Thus by Lemma 6 ("if")b�h is an equilibrium. �

Now I can prove the main Lemma.

Lemma 10 Fix h 2 H, m 2 N, a red. proced. (Shq )q�0, a set of unordered historiesbH = fh1; :::; hwg � Hh and a set of SPE � bH = (�eh)eh2 bH s.t. A1 holds for n = m and:

A2 for every v � w, there exists an equilibrium b�h;v 2 �(Shm�1) such that hv 2
[i2IDi(b�h;v) and for every q < v, if hq 2 H(b�h;v), b�h;v =� e�hq ;

A3 for each i 2 I, n � m, �h 2 Eh(� bH) and �hi � �h�i t.s.b. (Sh�i)n�1q=0 , �(�
h
i ) � Shi;n.

66See the previous footnote.
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Then there exist �h 2 Eh(� bH) and an equilibrium e�h 2 �(Shm) such that e�h =� �h.
Proof. The proof is by induction on the depth of �(h).
Inductive hypothesis (d)
The Lemma holds for every h 2 H such that �(h) has depth not bigger than d.

Basis step (1) For every i 2 I, n � m and equilibrium of �(h) �h such that

Supp�h � Shn�1, by A3 r(�h�i) � Shi;n. Inductively, Supp�h � Shm.
INDUCTIVE STEP (d+1) Suppose not. I will �nd a contradiction through

a recursive procedure. Set k = 0 and H
0
:= bH.

Recursive step (k)
If k > 0, H

k
and �H

k

are de�ned in step k � 1. Let n � m be the greatest q 2 N
such that there exist �h;k 2 Eh(�H

k

) and an equilibrium e�h;k 2 �(Shq�1) with e�h;k =�
�h;k. If k > 0, by the last remark of the previous steps, Eh(�H

k

) � ::: � Eh(�H
0

).

Then by � A3 implies A0. Moreover, n weakly decreases with k. Then �H
k

satis�es

A1 and A2 with n in place of m.67 Lemma 8 yields l 2 I and bh 2 Dl(e�h;k)n[h2HkHh.

De�ne the reduction procedure ((Sbhi;q)i2I)1q=0 := ((Shi;q(
bh)jbh))i2I)1q=0. Fix i 6= l

and v � n. For every e�bhi t.s.b. (Sbh�i;q)v�1q=0, since bh 2 Dl(e�h;k), by Lemma 1 there
exists e�hi =h e�h;k�i t.s.b. (Sh�i;q)v�1q=0 such that e�hi =bh e�bhi . By A0, �(e�hi ) � Shi;v; by |,
�(e�hi )(bh) 6= ;. Hence, together with Lemma 8, for every i 2 I, v � n, b�bh�i 2 �(Sbh�i;n)
and e�bhi � b�bh�i t.s.b. (Sbh�i;q)vq=0, �(e�bhi ) � Sbhi;v 6= ; (F).
Let eH0 := H

k \ Hbh: I show that there exist �bh 2 Ebh(� eH0
) and an equilibriume�bh =� �bh such that Suppe�bh � S

bh
n. Suppose not (G). I will �nd a contradiction

through a recursive procedure. For every q � w + k such that hq 2 eH0, let h
q
:= hq

and b�bh;q := b�h;qjbh, which is an equilibrium because [
h2HkHh 63 bh � hq 2 [i2IDi(b�h;q),

so bh 2 H(b�h;q). Set t = 0.
Recursive step (t) If t > 0, eH t and � eHt

are de�ned in step t� 1, and satisfy
A1 and A2 with n in place of m and bh in place of h.68 For every i 2 I, let �bh;ti be

the set of b�bhi 2 �(Sbhi;n) such that for every eh 2 eH t \H(b�bhi ), b�bhi =eh e�ehi .
First I show that �bh;t is non-empty and features an equilibrium of �(bh). Let

67For every hq 2 Hk
, e�hq 2 �(Shn(hq)jhq) and b�h;q 2 �(Shn�1) come from A1 and A2 if hq 2 bH,

from some previous step if hq 62 bH.
68For every h

q 2 eHt, e�hq 2 �(Shn(hq)jhq) and b�bh;q 2 �(Sbhn�1) come from the outer recursive step

if h
q 2 Hk

, from some previous step if h
q 62 Hk

.
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� := w + k + t. Note that for every i 2 I,

�
bh;t
i = \eh2 eHt \z2Zeh[Heh fb�bhi 2 �(Sbhi ) : b�bhi (Sbhi (z)) = b�bhi (Sbhi (eh)) � e�ehi (Sehi (z))g \�(Sbhi;n),

an intersection of convex and compact sets.69 Hence �
bh;t
i is convex and compact.

Then, since expected utility is linear, the reduced game with strategy sets (�
bh;t
i )i2I , if

non-empty, features an equilibrium e�bh;t. Fix i 2 I and �bhi =bh e�bh;t�i t.s.b. (Sbh�i;q)nq=0.
There exists b�bh;�+1i 2 �(�(�bhi )) � �(r(e�bh;t�i)) such that for every eh 2 eH t \ H(e�bh;t�i),
since e�bh;t�i =eh e�eh�i, by | b�bh;�+1i =� e�ehi . By F, b�bh;�+1i 2 �(Sbhi;n). If t = 0 and eH0 = ;,
�
bh;0 = �(Sbhn) 6= ; (by F) and b�bh;�+1i 2 �bh;0i , so that e�bh;ti 2 �(r(e�bh;t�i)) too. Else, for
notational convenience let b�bh;�+1�i := e�bh;t�i and proceed as follows.
For every eh 2 Hbh and q � � , let Qehq := fg � q : hg 2 eH t\Hehg and Qeh�+1 := Qeh� . I

show that for every q 2 Qbh� [f�+1g, there exists �bh;qi 2 �(Sbhi;n) such that �bh;qi =� b�bh;qi
and for every g 2 Qbhq , �bh;qi =h

g e�hgi . Fix q 2 Qbh� [ f� +1g and suppose to have shown
it already for every g 2 Qbhqnfqg. Since b�bh;qi 2 �(r(b�bh;q�i )), by b�bh;q 2 �(Sbhn) and F,
Lemma 5 yields �

bh;q
i 2 �(Sbhi;n) such that �bh;qi =� b�bh;qi and for every eh 2 D�i(b�h;q): ifeh 2 eH t, �

bh;q
i jeh = e�ehi ; if eh 62 eH t but Qehq 6= ;, �bh;qi jeh = �bh;maxQehqi jeh (where maxQehq < q

because h
q 2 eH t \ ([j2IDj(b�h;q)) and eH t \ ([j2IDj(b�h;q)) \ Heh = ;); if eh � h for

some h 2 eH t, �
bh;q
i jeh = e�hi jeh, so that by �bh;qi =� b�bh;qi =� e�hi and �, �bh;qi =h e�hi . Then

�
bh;�
i 2 �bh;ti 6= ;.70 So e�bh;t and b�bh;�+1 exist and �bh;�+1i 2 �bh;ti . Since �bh;�+1i =� b�bh;�+1i ,

�
bh;�+1
i 2 �(r(e�bh;t�i)). Then e�bh;ti 2 �(r(e�bh;t�i)) too.
By �, F implies A0 with bh in place of h; eH t sati�es A1 with n in place of m.

By the last remark of the previous steps Eh(� eHt
) � Eh(� eH0

), so, by G, e�bh;t satis�es
the hypotheses of Lemma 9.71 Lemma 9 yields p 2 I and h 2 Dp(e�bh;t)n [eh2 eHt H

eh.
De�ne the reduction procedure ((Shi;q)i2I)

1
q=0 := ((S

bh
i;q(h)jh))i2I)1q=0. Fix i 6= p

and v � n. For every e�hi t.s.b. (Sh�i;q)vq=0, since h 2 Dp(e�bh;t), by Lemma 1 there
exists e�bhi =bh e�bh;t�i t.s.b. (Sbh�i;q)v�1q=0 such that e�bhi =h e�hi . By A0, �(e�bhi ) � S

bh
i;v; by |,

�(e�bhi )(h) 6= ;. Hence, together with Lemma 9, for every i 2 I, v � n, �h 2 Eh(� eHt
)

and e�hi � �h�i t.s.b. (S
h
�i;q)

v
q=0, �(�

h
i ) � Shi;v. Moreover, for every q 2 Qh� , since

69Clearly, �(Sbhi;n) is convex and compact. Each set of the kind fb�bhi 2 �(Sbhi ) : (b�bhi )(Sbhi (z)) =
(b�bhi )(Sbhi (eh)) � cg, where c is a constant, is clearly convex and compact too. Notice that if eh 62 H(b�bhi ),b�bhi satis�es (b�bhi )(Sbhi (z)) = (b�bhi )(Sbhi (eh)) � c as 0 = 0.
70By recursive step t� 1, maxQbh� = � .
71Without loss of generality assume that for every i 2 I and eh 2 eHtnH(e�bh;ti ), e�bh;ti =

eh e�ehi .
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h 62 eH t, h
q � h 2 H(b�bh;q), so set b�h;q := b�bh;qjh. Then A3, A2 and A1 are satis�ed

with eH t\Hh in place of � bH , n in place of m and h in place of h. So by the I.H. there

exist �h 2 Eh(� eHt
) and an equilibrium e�h =� �h such that Suppe�h � Shn = Sbhn(h)jh.

Since h 62 [eh2 eHtH
eh and Hbh is �nite, eH t+1 := feh 2 eH t : eh 6� hg [ fhg is a set

of unordered histories that keep shortening with t, until a contradiction is obtained.

Before, let � eHt+1
:= �

eHt [ f�hgn(�eh)eh2 eHtn eHt+1, h
�+1

:= h, b�bh;�+1 := e�bh;t.72 Then,
increase t by 1 and run again noting what follows: for every eh 2 eH t such that eh � h,
�hjeh = �eh, so that Eh(� eHt+1

) � Eh(� eHt
).

Since bh 62 [
h2HkHh and Hh is �nite, H

k+1
:= feh 2 Hk

: eh 6� bhg [ fbhg is a set
of unordered histories that keep shortening with k, until a contradiction is obtained.

Before, let �H
k+1

:= �H
k

[ f�bhgn(�h)
h2HknHk+1, hw+k+1 := bh, b�h;w+k+1 := e�h;k.73

Increase k by 1 and run again noting what follows: for every h 2 Hk
such that h � bh,

�
bhjh = �h, so that Eh(�Hk+1

) � Eh(�H
k

). �

Proof of theorem 2. Fix j 2 I, h 2 Dj(S
1
�e) and (S

h
n)
1
n=0 = (S

n
�e(h)jh)1n=0. Fix

m 2 N, i 6= j and �hi t.s.b. (Sh�i;n)m�1n=0 . By self-enforceability (�(S
1
�e) = fzg) there

exists �i t.s.b. (S
n
�i;�e)

m�1
n=0 such that �i(S�i(h)jp(h)) = 0 and �(�i)(h) 6= ;. Hence, by

Lemma 1 there exists e�i =h �hi t.s.b. (Sn�i;�e)m�1n=0 such that �(e�i)(h) 6= ;. So A3 holds
for every i 6= j; A1 and A2 hold with bH = ;. By �(S1�e) = fzg there is m 2 N such
that Shm = ;, so Lemma 10 cannot hold. Thus A3 must be violated for j and some
v � m, SPE �h of �(h) and �hj � �h�j t.s.b (S

h
�j;v)

v
q=0. Fix s�j 2 S1�j;�e � S�j(z):

for every sh�j 2 Supp�hj (�jh), by Lemma 1 I can construct es�j 2 Sv�j;�e(z) such thates�j =h sh�j and es�j =Hnfhg s�j. Using all such es�j�s I can construct �j =h �hj t.s.b
(Sh�j;v)

v
q=0 and S�j(z) so that �(�j)(h) = ; and �(�j)(z) 6= ;. Then j prefers z to the

distribution over outcomes induced by �h. Hence, z is a SPE path. �

Proof of theorem 6. Lemma 10 can be applied with strong rationalizability as
reduction procedure, h := h0, empty bH, and m after convergence. �
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