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0.1 Complete agreements on subgame perfect equilibria un-

der priority to the agreement.

For complete agreements the equivalence between self-enforceability under priority to

the agreement and under priority to rationality does not hold. When the epistemic

priority falls on the agreement, a "strict" SPE is self-enforcing. I say that an equi-

librium s 2 S is strict when for every i 2 I, ri(s�i) � Si(�(s)). Strictness yields

self-enforceability on top of credibility (of the whole agreement; the path agreement

credibility test can give negative response).

Proposition 1 Fix a strict SPE s 2 S of a game with observable actions.1 The

corresponding complete agreement is self-enforcing under priority to the agreement.

Proof:
For every i 2 I and �i 2 �e

i , �i(s�ijh0) = 1, hence �(�i) � r(s�i) � Si(�(s))

by strictness. So S1i;�e � S1i;�e � Si(�(s)), yielding self-enforceability in case of

credibility.

Fix i 2 I andm � 1. For every n � m and h 2 H(Sni;�e), �x �i 2 �e
i that strongly

believes (Sq�i;�e)
n�1
q=0 such that �(�i)(h) 6= ;. For every es�i 2 Supp�i(�jh) and eh � h,

�Higher School of Economics, ICEF, emiliano.catonini@gmail.com
1Battigalli and Friedenberg [1] provide a game without observable actions and with no relevant

ties (which implies strictness of equilibria) where a SPE outcome is not induced by any extensive form
best response set and so it cannot be delivered by strong-�-rationalizability (see next subsection).
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es�i(eh) = s�i(eh). Thus by subgame perfection, there exists esi 2 �(�i)(h) � Sni;�e(h)

such that for every eh � h, esi(eh) = si(eh). Then for every j 2 I, there exists �j 2 �e
j

that strongly believes (Sq�j;�e)
m
q=0. So S

m+1
j;�e 6= ;. Inductively S1j;�e 6= ;. �

0.2 Implementability, extensive form best response sets and

mutually acceptable courses of actions

Natural candidates for implementability are the sets of outcomes for which there exists

an Extensive Form Best Response Set (Battigalli and Friedenberg, [1]; henceforth

EFBRS) inducing a subset of them. EFBRS�s are de�ned in [1] for the 2-players case.

They show that any EFBRS is delivered by strong-�-rationalizability under some

restrictions, while strong-�-rationalizability always delivers an EFBRS. The concept

and the result are extended to the N-players incomplete information case by Battigalli

and Prestipino [2]. Here I present a simpler version of the two for the framework of

this paper.

De�nition 1 (EFBRS) An Extensive Form Best Response Set is a cartesian subset
of strategy pro�les Q � S such that for every i 2 I and si 2 Qi, there exists �i 2
�H(S�i) such that:

1. si 2 �(�i);

2. �i strongly believes Q�i (8h 2 H, Q�i(h) 6= ; =) �i(Q�ijh) = 1);

3. �(�i) � Qi.

Proposition 2 Fix �i2IQi � S. The following are equivalent:

1. Q is an EFBRS;

2. Q = S1� for some �rst-order belief restrictions (�i)i2I .

Selective rationalizability can be seen as a special case of strong-�-rationalizability

by incorporating S3 in the �rst-order-beliefs restrictions. Hence, also selective ratio-

nalizability delivers an EFBRS. Thus, regardless of the epistemic priority assumption,

I can claim the following.
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Proposition 3 A set of outcomes P � Z is implementable only if there exists an

EFBRS Q such that �(Q) � P .

Proof. If P is implementable, �(S1e ) � P for some credible e = (ei)i2I and by

the proposition above S1e is an EFBRS. �

The existence of an EFBRS Q such that �(Q) � P is however not su¢ cient for

P to be implementable, even when the epistemic priority falls on the agreement.

The reason is that the �rst-order belief restrictions delivering Q through strong-�-

rationalizability could not correspond to any agreement. First, it may be impossible

to translate them into independent restrictions over pure actions. Moreover, when

players are more than two, they may need to have di¤erent restrictions about a third

player, like in this game borrowed from Greenberg, Gupta and Luo [3].

1

L1 . & R1

(1; 1; 1;�1) 2

L2 . & R2

(2; 2; 2; 0) 3

L3 . & R3

(0; 3; 3; 0) 4

L4 . & R4

(0; 4; 4; 1) (0; 0; 0; 1)

((R1; L2; R3; L4); (R1; L2; R3; R4)) (inducing outcome R1; L2) is an EFBRS. Indeed it

is delivered by strong-�-rationalizability when the restrictions impose on player 2

the belief that 4 will play R4 and on player 3 the belief that 4 will play L4. These

restrictions cannot come from an agreement because 2 and 3 have discordant ideas

about how 4 will play. In the analysis of [3] the path (R1; L2) is instead a mutually

acceptable course of actions. In their interpretation, (R1; L2) can be achieved through

an agreement between player 1 and 2. Such agreement does not work here, not

because of forward induction (which is not a feature of [3]) but because the de�nition

of implementability is more restrictive. An outcome is implemented if the �rst-order-

belief restrictions induced by the agreement su¢ ce to deliver it as the only possible

one.
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0.3 Formal analysis of the examples of Section 2

Formal analysis of example 1 in Section 2.

P1nP2 M R P1nP2 N O

M (6; 6) �� � �� � ! A (2; 0) (1; 4)

R (0; 0) (5; 5) S (0; 10) (2; 8)

Agreement:
e1(h

0) = fMg; e1((M;R)) = fAg; e2(h0) = fMg; e2((M;R)) = fNg.

First-order-belief restrictions:
�e
1 = f(�1(�jh0); �1(�j(M;R))) 2 �H(S2) : �1((M:N)jh0) = 1; �1(R:N j(M;R)) =

1g;
�e
2 = f(�2(�jh0); �2(�j(M;R))) 2 �H(S1) : �2((M:A)jh0) = 1; �2(M:Aj(M;R)) =

1g.
Note that the two sets are singletons.

Strong-�-rationalizability:
S11;�e = fM:Ag; S12;�e = fM:N;M:Og, S11;�e = fM:Ag; S12;�e = fM:N;M:Og.
The sequentially rational strategies of player 2 do not allow (M;R); hence, at

the second step, player 1 can still believe in R:N after (M;R) and the procedure

already comes to convergence. Strongly-�-rationalizable strategies comply with the

agreement at the reached information sets. The agreement is self-enforcing under

priority to the agreement.

Strong rationalizability:
S11 = fM:A;M:S;R:A;R:Sg; S12 = fM:N;M:O;R:N;R:Og;
S11 = fM:A;M:S;R:A;R:Sg; S12 = fM:N;M:O;R:N;R:Og.
each strategy is a sequential best reply to some conjecture: for s1 = R:� and

s2 = M:� it is enough to put at h0 probability 1 on, respectively, R:� and M:A; for
s1 =M:A and s1 =M:S on M:� at h0 and on, respectively, R:N and R:O at (M;R);

for s2 = R:N and s2 = R:O on R:� at h0 and on, respectively, M:S and M:A at

(M;R).

Selective rationalizability:
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S11;R�e = fM:Ag; S12;R�e = fM:N;M:Og; S11;R�e = fM:Ag; S12;R�e = fM:N;M:Og.
The procedure is equivalent to strong-�-rationalizability, because all strategies

are strongly rationalizable, hence S3 has no bite.

Formal analysis of example 2 in Section 2.

AnB C D P

C 5; 5 2; 6 0; 2

D 6; 2 3; 3 0; 2

P 2; 0 2; 0 1; 1

The game is symmetric, so what follows holds for i = A;B.

Agreement:
ei(h

0) = fCg; ei((C;C)) = fDg; ei(h) = fC;D; Pg 8h 6= h0; (C;C).

First-order-belief restrictions:
�e
i = f�i 2 �H(S�i) : �i(S�i((C;C); (D;D)))jh0) = 1g

(the conjectures are restricted also at (C;C) by the chain rule.)

Strong-�-rationalizability:

S1i;�e = fsi 2 Si : si((si(h0); C)) = D ^ si((si(h0); D)) 6= C 6= si((si(h0); P ))g
It is worth deviating in the �rst stage only if after the expected C, P is expected

with su¢ ciently low probability, so that D is the best reply. A deviation to P is

(weakly) optimal if it is expected to induce the co-player to cooperate in the second

stage. Moreover, there is no incentive to cooperate in the second stage.

S2i;�e = fsi 2 S1i;�e : si(h0) 6= P ^ si(h0) = C ) si((C;D)) = si((C;P )) = Dg
There is no incentive to punish in the �rst stage since it cannot trigger C in the

second. Moreover, if the co-player has deviated and her beliefs are con�rmed by

observing C, she will not play P , so there is no incentive to react with P to the

deviation after having cooperated.

S3i;�e = fsi 2 S2i;�e : si(h0) = Dg
There is no incentive to cooperate in the �rst stage since defecting will not trigger

the punishment.
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S4i;�e = ;, i.e. the agreement is not credible.

Strong rationalizability:

S1i = fsi 2 Si : 8h 2 H(si); h 6= h0; si(h) 6= C ^ si(h0) = C ) 9a�i 2
A�i; si((C; a�i)) 6= Pg
It is not rational to play C in the second stage, or in the �rst and then play P

whatever the co-player has chosen.2 Excluding to believe in such strategies, among

the remaining ones also those that feature C in the �rst stage may be sequential best

replies when one expects P as a reaction otherwise. Thus, we have:

S1i = S1i .

Selective rationalizability:

S1i;R�e = S
1
i;�e \ fsi 2 Si : si(h0) 6= Pg

Since no rational(izable) strategy of the co-player prescribes to cooperate in the

second stage, punishing in the �rst stage cannot induce cooperation in the second.

S2i;R�e = fsi 2 S1i;R�e : si(h0) = C ) si((C;D)) = Dg
After cooperating against a defection, there is no incentive to punish. Note that

S2i;R�e is not a subset of S
2
i;�e because having already excluded punishment in the �rst

stage, if punishment occurs there is no constraint to expect defection thereafter. This

is due to the epistemic priority di¤erence: if player 1 observes P in the �rst stage,

here she concludes that player 2 does not believe in the agreement, so 2 could expect,

say, always P ; before, player 1 concluded that player 2 does not believe that player 1

is rational, so 2 could expect C in the second stage.

S3i;R�e = fsi 2 S2i;R�e : si(h0) = Dg
There is no incentive to cooperate in the �rst stage since defecting will not trigger

the punishment.

S4i;R�e = ;. The agreement is not credible.

2With P one can expect at most 2 but under conjectures that make D more pro�table. Moreover
under every conjecture one can expect at least 1. Thus there is no incentive to give up at least 1 by
playing C in the �rst stage if then one believes that P is the most pro�table action in any case.
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0.4 Why are players not required to believe in strategies that

comply with the agreement at no more reachable histo-

ries?

Consider the following partial representation of a game, where Ann obtains a payo¤

of 2 after Out, at most 1 in the subgames that follow Down, and up to 3 in the

subgames that follow Up.

Ann

I . & O

Bob 2

. L R&
Ann Ann

U . & D D . & U

::: ::: ::: :::

up to 3 max 1 max 1 up to 3

Ann and Bob reach the following agreement: Ann claims to play D at (I; R). At

(I; L;D), Bob cannot believe that Ann is rational and would have played D also at

(I; R), because any strategy of Ann which prescribes I, D at (I; L), and D at (I; R)

is dominated by O. There are instead rational strategies of Ann that allow (I; L;D),

those that prescribe U at (I; R) and aim to a payo¤ of at least 2 afterwards. Thus, if

Bob were required by his restrictions to believe at (I; L;D) in strategies of Ann that

comply with the agreement, strong-�-rationalizability would yield an empty set at

the second step. But then, the agreement would be deemed not credible only because

if a history were reached (and it is not if Ann is rational and plans to comply with the

agreement), this would signal the past intention of a player to violate the agreement

at a no more reachable history.

Yet "D at (I; R)" should suggest to Bob that Ann will try to get more than 2

after (I; L; U). Will Bob take this into consideration? The answer is yes as long as

Ann behaves as he expects. At I, Bob is required to believe that Ann plans to comply

with the agreement. If Bob believes also that Ann is rational, he expects Ann to play

U after L and aim to a payo¤ of at least 2 afterwards. This expectation is transfered

by CPS-3 to (I; L; U). Yet, if the players reach an information set that Bob does not
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expect at (I; L; U), Bob is free to believe in Ann�s rational strategies that prescribe

U at (I; R). Therefore, Bob uses his belief in the agreement only as long as Ann

behaves as he expects. However, if at some step n of the rationalizability procedure

Ann excludes to play U at (I; R), Bob will believe in strategies of Ann that prescribe

D at (I; R) at each information set that the strategies of Ann which survive n steps

allow.

0.5 Equilibrium paths that can be upset by a convincing de-

viation

Take the T-fold repetition GT of an arbitrary two-players (i and j) static game G

with action sets Ai and Aj and payo¤ function vk : Ai�Aj ! R, k = i; j. Let bk and
ck be the �rst- and second-ranked stage-outcomes of G for player k = i; j.

Let (a1; ::; aT ) be a path of pure Nash equilibria of G. Suppose that there exist

� 2 f1; :::; T � 1g and bai 2 Ai such that
vi((bai; a�j )) + vi(ci) + (T � � � 1)vi(bi) < TX

t=�

vi(a
t) < vi((bai; a�j )) + (T � �)vi(bi) (I)

and

(T � �)vj(bi) > max
aj2Ajnfbijg

vj(b
i
i; aj) + (T � � � 1)vj(bj); (J)

where j 6= i.
Such a path is called by Osborne [4] "equilibrium path that can be upset by a

convincing deviation". In this framework, such paths can be characterized as non

credible agreements.

Proposition 4 Let z = (a1; :::; aT ) be a path that can be upset by a convincing devi-
ation. The corresponding path agreement is not credible.

Proof: For k = i; j and every (a1; :::; aT ) 2 Z, de�ne uk : Z ! R as uk((a1; :::; aT )) :=PT
t=1 vk(a

t). Let bh := (a1; ::; (bai; a�j )) and z := (a1; ::; (bai; a�j ); bi; :::; bi).
For every �i 2 �e

i , sj 2 Supp�i(�jh0) and s0i 2 Si(z), �(s0i; sj) = z; for every

si 2 Si(bh)nSi(z), by (I) ui(z) > ui(�(si; sj)), thus si =2 S1i;�e. Yet, there exist sj 2 Sj
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and �i 2 �e
i such that �i(sjjh0) = 1 and for every h = (ea1; :::;eat) 6� bh, sj(h) = at+1j

and for every h � bh, sj(h) = bij. By (I) �(�i) � S1i;�e(bh) 6= ;.
Then for every �j 2 �e

j that strongly believes S
1
i;�e, si 2 Supp�j(�jbh) and s0j 2

Sj(z), �(si; s0j) = z; for every sj 2 Sj(bh)nSj(z), by (J) uj(z) > uj(�(si; sj)), thus

sj =2 S2j;�e. Yet, there exist si 2 Si and �j 2 �e
j that strongly believes S

1
i;�e such that

�j(sijh0) = 1 and for every h = (ea1; :::;eat) 2 H, sj(h) = at+1j . So �(�j) \ Sj(z) 6= ;
and then S2j;�e(bh) 6= ;.
Then for every �i 2 �e

i that strongly believes S
2
j;�e, �i(Sj(z)jp(bh)) = 1, so by (I)

�(�i)(z) = ;. Hence S3i;�e(z) = ;.3

So, there does not exist �j 2 �e
j such that �j(S

3
i;�ejh0) = 1, thus S4j;�e = ;. �

Other than delivering a class of non credible path agreements, the proposition

provides epistemic conditions under which the deviator can con�dently upset the

path. They are the ones employed in the proof up to the footnote and give rise to the

same instances of forward induction reasoning as in the second example of Section 2.

That path would indeed fall in the class of paths that can be upset by a convincing

deviation by extending the de�nition to all paths in the natural way.

0.6 Proof of Lemma 1

Lemma 1 Fix a reduction procedure ((Shi;q)i2I)q�0, i 2 I, n 2 N, bh 2 Hh and

�hi 2 �Hh
(Sh�i) t.s.b. (S

h
�i;q)

n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi ), �bhi

t.s.b. (Sh�i;q(bh)jbh)n�1q=0 and s
bh
i 2 �(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi t.s.b. (Sh�i;q)n�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) =

�hi (�jeh), and eshi 2 �(e�hi ) (so that �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
Proof.
Fix a map & : Sbh�i 7! Sh�i that associates each s

bh
�i 2 S

bh
�i with a s

h
�i 2 Sh�i;m(bh) such

that sh�i =
bh sbh�i, where m := maxfq < n : 9sh�i 2 Sh�i;q(bh); sh�i =bh sbh�ig. Construct

an array of additive measures (e�hi (�jeh))eh2Hh on Sh�i such that for every eh 62 H
bh,e�hi (�jeh) = �hi (�jeh), and for every eh 2 Hbh and sbh�i 2 Sbh�i, e�hi (&(sbh�i)jeh) = �

bh
i (s

bh
�ijeh).

3Under the beliefs used so far player i is shown to be willing to deviate from the path, con�dent
of having convinced player j to follow her preferred subpath after the deviation.
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Since & is injective, e�hi satis�es CPS-1. Using the de�nition of &, it is immediate to
verify that e�hi =bh �bhi , satis�es CPS-2, and strongly believes (Sh�i;q)n�1q=0 . Finally, sincee�hi (S�i(bh)jp(bh)) = 0, e�hi satis�es CPS-3.
Fix eh 2 H(eshi )nHbh = H(eshi )nHbh. If eh � bh, by �hi (Sh�i(bh)jp(bh)) = 0 and CPS-3,

�hi (S
h
�i(
bh)jeh) = 0, and for every sh�i 62 Sh�i(bh), �(shi ; sh�i) = �(eshi ; sh�i). If eh 6� bh, for

every sh�i 2 Sh�i(eh), bh 62 H(shi ; sh�i) 3 eh, so �(shi ; sh�i) = �(eshi ; sh�i). Hence shi 2 br(�hi ;eh)
implies eshi 2 br(�hi ;eh) = br(e�hi ;eh). If eshi ; shi 62 Shi (

bh), the proof is over. Else, �xeh 2 Hbh \H(eshi ) = H(sbhi ). For every sbh�i 2 Sbh�i, e�hi (&(sbh�i)jeh) = �bhi (sbh�ijeh). For everybshi 2 Shi (bh), �(bshi jbh; sbh�i) = �(bshi ; &(sbh�i)). So, eshi jbh = sbhi 2 br(�bhi ;eh) implies eshi 2 br(e�hi ;eh).
�

0.7 Proof of Lemma 3

Lemma 3 Fix a red. procedure ((eShi;q)i2I)q�0, subsets of strategies (Shi )i2I , m 2 N
and l 2 I. Let HS := H(S

h
) and DS := Dl(S

h
). For every i 6= l, suppose that

there exists a map �hi : S
h

i ! �Hh
(Sh�i) such that for every s

h
i 2 S

h

i , �
h
i (s

h
i ) strongly

believes S
h

�i, and:

A1 there exist maps �hi : S
h

i ! �Hh
(Sh�i) and s

h
i : S

h

i ! Shi such that for every s
h
i 2

S
h

i , �
h
i (s

h
i ) =

HS
�
h
i (s

h
i ) strongly bel. (eSh�i;q)m�1q=0 and �(�

h
i (s

h
i )) 3 shi (shi ) =H

S
shi ;

A2 for every shi 2 S
h

i and �
h
i =

HS
�
h
i (s

h
i ) t.s.b. (eSh�i;q)m�1q=0 , �(�

h
i ) � eShi;m.

Fix �hl t.s.b. (eSh�l;q)mq=0 and �i6=l(shi (shi ))shi 2Shi . Fix eD � DS and for every bh 2 eD,
�x e�bhl t.s.b. (eSh�l;q(bh)jbh)mq=0. Let H� := Hhn [bh2 eD Hbh.
There exists e�hl =H�

�hl t.s.b. (eSh�l;q)mq=0 such that for every bh 2 eD, e�hl =bh e�bhl .
Proof.
For every bh 2 eD �x a map &bh : Sbh�l 7! Sh�l that associates each s

bh
�l 2 S

bh
�l with a

sh�l 2 Sh�l;n(bh) such that sh�l =bh sbh�l, where n := maxfq � m : 9sh�l 2 eSh�l;q(bh); sh�l =bh
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s
bh
�lg. De�ne an array of additive measures (e�hl (�jeh))eh2Hh on Sh�l as follows:

e�hl (sh�ljeh) = �hl (S
h;sh�l
�l;H�jeh) �Qbh2 eD e�bhl ((sh�ljbh)jbh); 8eh 2 HS;8sh�l 2 Sh�l(eh);e�hl (sh�ljeh) = e�hl (sh�ljp(bh))=e�hl (Sh�l(eh)jp(bh)); 8bh 2 DS;8eh 2 Hbh; e�hl (Sh�l(eh)jp(bh)) 6= 0;8sh�l 2 Sh�l(eh);e�hl (sh�ljeh) = e�bhl ((&bh)�1(sh�l)jeh); 8bh 2 eD; 8eh 2 Hbh; e�hl (Sh�l(eh)jp(bh)) = 0;8sh�l 2 &bh(Sbh�l);e�hl (sh�ljeh) = 0; 8bh 2 eD; 8eh 2 Hbh; e�hl (Sh�l(eh)jp(bh)) = 0;8sh�l 62 &bh(Sbh�l) ^ 8eh 2 Hh;8sh�l 62 Sh�l(eh);e�hl (�jeh) = �hl (�jeh) else.

Fix h 2 HS and sh�l 2 Sh�l(h). For every esh�l 2 Sh;sh�l�l;H�, S
h;esh�l
�l;H� = S

h;sh�l
�l;H� =: eSh�l (N).

So:

e�hl (eSh�ljh) =Pesh�l2eSh�l e�hl (esh�ljh) =Pesh�l2eSh�l �hl (eSh�ljh)�Qbh2 eD e�bhl ((esh�ljbh)jbh) = �hl (eSh�ljh)
(4)

where the last equality holds because ((esh�ljbh)bh2 eD)esh�l2eSh�l = �bh2 eDSbh�l. Fix ez � h such
that p(ez) 2 H�. For every eh � ez, eh 2 H�. Then Sh�l(ez) = [esh�l2Sh�l(ez)Sh;esh�l�l;H�, a union of

pairwise identical or disjoint sets by N. Then by 4 e�hl (Sh�l(ez)jh) = �hl (Sh�l(ez)jh) (H).
Hence e�hl (Sh�l(h)jh) = �hl (S

h
�l(h)jh) = 1, thus with e�hl (Sh�lnSh�l(h)jh) = 0, e�hl (�jh)

satis�es CPS-1,2. Using H in the last equality of the �rst equation and the �rst

equation in the second and third equalities of the second equation:

e�hl (sh�ljh)=e�hl (sh�ljeh) = �hl (
eSh�ljh)=�hl (eSh�ljeh)=�hl (Sh�l(eh)jh)=e�hl (Sh�l(eh)jh); 8eh 2 Hh \H(sh�l) \HS;e�hl (sh�ljh)=e�hl (sh�ljeh) = e�hl (sh�ljh) � e�hl (Sh�l(eh)jp(bh))=e�hl (sh�ljp(bh))=e�hl (Sh�l(eh)jp(bh)) � e�hl (Sh�l(p(bh))jh)=

= e�hl (Sh�l(eh)jh); 8bh 2 DS \Hh;8eh 2 H(sh�l) \Hbh; e�hl (Sh�l(eh)jp(bh)) 6= 0;
while by 4, since �hl strongly believes �i6=l(shi (shi ))shi 2Shi , e�hl (Sh�l(eh)jh) = 0 for alleh 62 [bh2DSH

bh [HS. So e�hl satis�es CPS-3 when C = Sh�i(h).
Fix bh 2 DSn eD and h 2 H

bh such that e�hl (Sh�l(h)jp(bh)) 6= 0. Since e�hl (�jp(bh))
satis�es CPS-1,2, by de�nition e�hl (�jh) satis�es CPS-1,2 too. Moreover, for everyeh � h such that e�hl (Sh�l(eh)jh) 6= 0, e�hl (Sh�l(eh)jp(bh)) 6= 0 too. So for every sh�l 2 Sh�l(eh),
using that e�hl satis�es CPS-3 when C = Sh�i(p(bh)),
e�hl (sh�ljh) = e�hl (sh�ljeh) � e�hl (Sh�l(eh)jp(bh))=e�hl (Sh�l(h)jp(bh)) = e�hl (sh�ljeh) � e�hl (Sh�l(eh)jh);
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i.e., e�hl satis�es CPS-3 when C = Sh�i(h). For every ez � h, using H in the second
equality,

e�hl (Sh�l(ez)jh) = e�hl (Sh�l(ez)jp(bh))=e�hl (Sh�l(h)jp(bh)) = �hl (Sh�l(ez)jp(bh))=�hl (Sh�l(h)jp(bh)) = �hl (Sh�l(ez)jh):
(O)

Fix either h 62 [bh2DSH
bh[HS or bh 2 DSn eD and h 2 Hbh such that e�hl (Sh�l(h)jp(bh)) =

0. It holds e�hl (�jh) = �hl (�jh). So, e�hl (�jh) satis�es CPS-1,2. Moreover, since for everyeh � h, e�hl (�jeh) = �hl (�jeh) too, e�hl satis�es CPS-3 when C = Sh�i(h). Finally, together
with H and O, e�hl =H�

�hl (provided e�hl is a CPS).
Fix bh 2 eD and h 2 Hbh. Fix sbh�l 2 Sbh�l(h). For every esbh�l 2 Sbh�l, let Sh(esbh�l) :=

fesh�l 2 Sh�l(
bh) : esh�l =bh esbh�lg. Note that if bsbh�l 6= s

bh
�l, S

h(bsbh�l) \ Sh(sbh�l) = ;. So
(Sh(esbh�l))esbh�l2Sbh�l(h) is a partition of Sh�l(h). Then:
e�hl (Sh(sbh�l)jh) = e�hl (Sh(sbh�l)jp(bh))=Pesbh�l2Sbh�l(h) e�hl (Sh(esbh�l)jp(bh)) =

=
e�bhl (sbh�ljbh) �Psh�l2Sh(s

bh
�l)
�hl (S

h;sh�l
�l;H�jp(bh)) �Qeh2 eDnfbhg e�ehl ((sh�ljeh)jeh)Pesbh�l2Sbh�l(h) e�bhl (esbh�ljbh)�Psh�l2Sh(esbh�l) �hl (S

h;sh�l
�l;H�jp(bh)) �Qeh2 eDnfbhg e�ehl ((sh�ljeh)jeh)� =

= e�bhl (sbh�ljbh)=e�bhl (Sbh�l(h)jbh) = e�bhl (sbh�ljh) if e�hl (Sh�l(h)jp(bh)) 6= 0;e�hl (Sh(sbh�l)jh) = e�hl (&bh(sbh�l)jh) = e�bhl (sbh�ljh) if e�hl (Sh�l(h)jp(bh)) = 0;
because the quantity in brackets does not depend on the particular esbh�l. So, like e�bhl ,e�hl (�jh) satis�es CPS-1,2 and CPS-3 when C = Sh�i(h). Hence e�hl =H�

�hl is a CPS

with e�hl =bh e�bhl for all bh 2 eD.
Finally, I show that e�hl strongly believes (eSh�l;q)mq=0.
Fix eh 2 HS, i 6= l and eshi 2 SuppMargShi e�hl (�jeh). SinceMargShi �hl (Sh;eshii;H�jeh) 6= 0 and

MargShi �
h
l ((s

h
i (s

h
i ))shi 2S

h
i
jeh) = 1, there exists shi 2 S

h

i such that s
h
i (s

h
i ) =

H� eshi . For
every bh 2 eD, eshi jbh 2 SuppMargSbhi e�bhl (�jbh) � eShi;m(bh)jbh 6= ; (by bh 2 H((shi (shi ))shi 2Shi )),
hence there exists �bhi t.s.b. (eSh�i;q(bh)jbh)m�1q=0 such that eshi jbh 2 �(�bhi ). Since �hi (shi ) =HS

�
h
i (s

h
i ) which strongly believes S

h

�i, �
h
i (s

h
i )(S

h
�i(
bh)jp(bh)) = 0. Thus, by repeatedly

applying Lemma 1, I can �nd �hi =
H�
�hi (s

h
i ) =

HS
�
h
i (s

h
i ) t.s.b. (eSh�i;q)m�1q=0 such thateshi 2 �(�hi ). By A2 �(�hi ) � eShi;m. So e�hl (eSh�l;mjeh) = 1 for all eh 2 HS.
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Then, for every bh 2 DS and eh 2 Hbh such that e�hl (Sh�l(eh)jp(bh)) 6= 0, by construc-
tion e�hl (eSh�l;mjeh) = 1 too. For every bh 2 DS and eh 2 Hbh such that e�hl (Sh�l(eh)jp(bh)) =
0, e�hl (&bh(Suppe�bhl (�jeh))jeh) = 1, e�bhl strongly believes (eSh�l;q(bh)jbh)mq=0 and if Suppe�bhl (�jeh) �eSh�l;q(bh)jbh, &bh(Suppe�bhl (�jeh)) � eSh�l;q. Else, e�hl (�jeh) = �hl (�jeh) and �hl strongly believes
(eSh�l;q)mq=0. So e�hl strongly believes (eSh�l;q)mq=0. �
0.8 Proof of Lemma 5

Lemma 5. Fix v � n and i 2 I such that e�hi 2 �(r(e�h�i)) and for every �hi =� e�h�i
t.s.b. (Sh�i;q)

v�1
q=0, �(�

h
i ) � Shi;v. For every eh 2 D�i, �x b�ehi 2 �(Shi;v(eh)jeh). There existsb�hi 2 �(Shi;v) such that b�hi =� e�hi and for every eh 2 D�i, b�hi jeh = b�ehi .

Proof.
Let H� := Hhn([bh2D�iHbh). De�ne an additive measure b�hi on Shi as:

b�hi (shi ) = e�hi (Sh;shii;H�) �
Qbh2D�i b�bhi (shi jbh), 8shi 2 Shi :

Fix shi 2 Shi . For every eshi 2 Sh;shii;H�, S
h;eshi
i;H� = S

h;shi
i;H�. Then:

b�hi (Sh;shii;H�) =
P

eshi 2Sh;shii;H�
e�hi (Sh;eshii;H�) �

Qbh2D�i b�bhi (eshi jbh) = e�hi (Sh;shii;H�);

where the last equality holds because ((eshi jbh)bh2D�i)esh�l2Sh;shii;H�
= �bh2D�iSbhi . Hence b�hi 2

�(Shi ). Fix ez 2 Hh [ Zh such that p(ez) 2 H�. For every eh � ez, eh 2 H�. Then

Shi (ez) = [eshi 2Shi (ez)Sh;eshii;H�, a union of pairwise identical or disjoint sets. So b�hi (Shi (ez)) =e�hi (Shi (ez)). Thus b�hi =� e�hi .
Fix bh 2 D�i and s

bh
i 2 S

bh
i . For every esbhi 2 Sbhi , let Sh(esbhi ) := feshi 2 Shi (bh) : eshi jbh =esbhi g. Note that if bsbhi 6= s

bh
i , S

h(bsbhi ) \ Sh(sbhi ) = ;. So (Sh(esbhi ))esbhi 2Sbhi is a partition of
Shi (
bh). Then:

(b�hi jbh)(sbhi )= b�hi (Sh(sbhi ))Pesbhi 2Sbhi b�hi (Sh(esbhi ))=
b�bhi (sbhi ) �Peshi 2Sh(sbhi ) e�hi (Sh;eshii;H�) �

Qeh2D�infbhg b�ehi (eshi jeh)Pesbhi 2Sbhi b�bhi (esbhi )�Peshi 2Sh(esbhi ) e�hi (Sh;eshii;H�) �
Qeh2D�infbhg b�ehi (eshi jeh)�=b�

bh
i (s

bh
i );

since the quantity in brackets does not depend on the particular esbhi . So b�hi jbh = b�bhi .
13



Finally I show that b�hi 2 �(Shi;v). Fix bshi 2 Suppb�hi . Since e�hi (Sh;bshii;H�) 6= 0, there

exists shi 2 Suppe�hi such that shi =H� bshi . Fix �hi =h e�h�i t.s.b. (Sh�i;q)v�1q=0. Since

shi 2 r(e�h�i), by | there exists shi 2 �(�hi ) such that for every eh 2 H�,4 shi (eh) =
shi (
eh) = bshi (eh). For every bh 2 D�i, bshi jbh 2 Suppb�bhi � Shi;v(bh)jbh, so there exists �bhi t.s.b.

(Sh�i;q(
bh)jbh)v�1q=0 such that bshi jbh 2 �(�bhi ). Thus, by repeatedly applying Lemma 1, I can

�nd e�hi =h e�h�i t.s.b. (Sh�i;q)v�1q=0 such that bshi 2 �(e�hi ), and by hypothesis �(e�hi ) � Shi;v.
�
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