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Abstract

The paper examines an interaction of boundedly rational agents that are
able to calculate their benefits after reaction of an opponent to their own devia-
tions from the current strategy. Accounting for strategic aspects of interaction
among players can be implemented as a generalization of the Nash equilibrium
concept. This is a possible compromise behavior: not absolutely myopic as
Nash concept and not as wise as supergame approach. This leads to a far-
sighted equilibrium concept that we call a Nash-2 equilibrium. We prove the
existence of Nash-2 equilibrium for almost every 2-person game and discuss
the problem of possible multiplicity of such equilibria. For a number of mod-
els (Bertrand duopoly with homogeneous and heterogeneous product, Cournot
duopoly, Tullock contest) the Nash-2 equilibrium sets are obtained and treated
as tacit collusion or strong competition depending additional security consid-
erations. For n-person games the idea of selective farsightness is introduced by
means of reflection network among players. Examples demonstrate that the
reflection network topology fundamentally affects possible equilibria.
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1 Introduction

Profit maximization principle underlies most reasoning about rational be-
havior of agents. However, making an individual choice is necessarily based
on expectations about how other players act. This is a great source of un-
certainty in a prediction of equilibrium outcome. Nash equilibrium (NE)
concept adopts the idea that each player unilaterally maximizes her own
profit at the current game position under fixed opponent strategies. Effect
produced by actions on the opponents’ strategies is modelled by means of
multi-stage game. The appropriate interpretation for static setting is that
players are sophisticated enough to make correct predictions about the once
and for all made choice of other participants and such beliefs are consistent
in equilibrium.

Alternative approach to decision making has found an expression in mod-
eling iterated strategic thinking process [5]. Multistep player’s reasoning
about possible consequent responses of opponents and her own further ac-
tions motivate a development of various bounded rationality concepts. A
number of similar models of agents’ cognitive hierarchy, or adhering to other
terminology k-level rationality, or smartn players, are developed in [12] [11],
[33]. Some empirical studies support k-level rationality approach ([11], [26]).
The important point of hierarchical models is that each player assumes that
other players have a lower level of rationality. It means that players of level-0
are strategically naive, while k-level players (k > 0) best respond on some
beliefs about how their opponents are distributed by lower levels of rational-
ity.

The reasonable level of rationality is an open question, moreover, it may
be changed in the course of playing the next round of a game: ”players
iteratively adjust their depths of reasoning in response to each others’ choices,
then both the choices of all participants and their expressed depths of iterated
reasoning should become closer to each other over time” [16].

The smallest but higher than Nash level of rationality is two. In this case
a player, for instance, takes into account opponents’ best responses (see [19]
for cooperative equilibrium, and [4] for equilibrium in double best responses).
But earlier well known example of such an approach is the method of con-
jectural variations (CV) in modelling oligopoly (since [6]). This approach
accounts interaction among agents by means of explicit including a reaction
function in the model. Despite existing criticism [17] pointing out an ambi-
guity of using formally static CV models for dynamic modeling, CV approach
has proved to be a good substitute for repeated oligopolistic game [10], [13].
Matching belief about the behavior of the opponents with their actual best
responses solves the problem of CV consistency [9]. The crucial point in
the CV approach is that a player estimates in his mind, before she acts, the
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possible nearest reaction of other participants to the changes she produces.
Definitely, this can be treated as a simple 2-level version of a general iterated
strategic thinking process. The first level here is a desire to maximize her
own profit. The second level is an attempt to predict opponents’ responses,
which in turn influence the final outcome. The generalization of the idea of
reaction function is the concept of Markov perfect equilibrium [28].

So, the problem of prediction and belief consistency is solved in several
ways: by ignoring any possible reactions (Nash approach: analysis of re-
sponses is transferred to fully dynamic setting), by imposing condition of
coinciding real responses with expected ones (CV approach), or by construct-
ing models with hierarchy of possibilities to predict behavior of opponents
(cognitive hierarchy models). An important feature of all these methods is
that they select the unique, the most plausible reaction and propose rela-
tively small sets of equilibria (we consciously avoid the phrase ”the unique
equilibrium” since, in general, this is not always the case).

This paper offers an alternative principle of accounting responses: a player
doesn’t try to select any certain response of opponent and recognize that any
action that increase opponent’s utility is possible. This leads to multiplic-
ity of equilibrium prediction, but it can be explained by natural limitation
of making correct forecast of opponent behavior. However, such limited ra-
tionality approach is not necessarily bad for agents. As it will be shown in
the paper, it often allows them to strategically support collusion or some
intermediate between collusive and competitive outcomes. One extra level of
farsightness in comparison with one-shot Nash rationality even under large
uncertainty on other agent behavior may play a role of tacit communication
between agents.

We develop an equilibrium concept that we call Nash-2 equilibrium. The
main part of the results covers 2-person games. In Section 2 we formulate
the definition of Nash-2 equilibrium in terms of modified notion of profitable
deviation accounting profitable opponent responses. We introduce a natu-
ral division of Nash-2 profiles to secure and risky which reflects the various
toughness of competition between agents, the degree of toughness can govern
the final choice. We examine a relation of the concept to close existing ones:
sequentially stable set [15] and equilibrium in secure strategies [20] with its
modification.

Section 3 clarifies the problem of existence of Nash-2 equilibrium. We
show that pure Nash-2 equilibrium exists in considerably wider class of two-
person games than Nash equilibrium, and for any game with bounded payoff
functions it can be obtained by a small perturbation of payoffs. One more
important point about Nash-2 equilibria is multiplicity of predicted outcomes
in most games. The problem of selection the unique equilibrium profile from
the wide set can be solved in several ways in dependence of concrete game
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framework. The starting point (status quo, or a priory expectations) sig-
nificantly influence the equilibrium realized. An approach that we offer is
to construct the measure of feasibility on the set of Nash-2 equilibrium un-
der the assumption that initially all game profiles are equiprobable. Several
examples of how it is constructed are given.

Section 4 contains detailed analysis of several basic microeconomics mod-
els with Nash-2 approach: quantity and price competition, and rent-seeking
model of Tullock. For the basic model of Cournot competition equilibria
obtained can be divided into two types: ones are extension of Stackelberg
leadership equilibria, and others are intermediate profiles with various degree
of competition toughness. The results for Bertrand competition with imper-
fect substitutes and for Tullock contest demonstrate great potential for tacit
collusion between agents.

In Section 5 we introduce the formal notion of reflection network for n
players and formulate the definition of Nash-2 equilibrium for n-person games.
The intuition of how this network can arise and is interpreted is given. We
illustrate the idea with the models of Bertrand competition and Prisoner’s
dilemma and provide solutions of them for various types of reflection network.
The crucial point is that accounting of reflection structure among players
considerably affects equilibrium.

We conclude the paper by a brief discussion on the connection of pre-
sented approach with the problem of decision making under various types of
uncertainty: about probabilities of the state of the world, about the depth of
iterated thinking, about timing in the model.

2 Nash-2 equilibrium for 2-person games

2.1 Definition

Consider a 2-person non-cooperative game in the normal form

G = (i ∈ {1, 2}; si ∈ Si;ui : S1 × S2 → R),

where si, Si and ui are the strategies, the set of all available strategies and
the payoff function, respectively, of player i, i = 1, 2. Henceforth, in this
paper we will deal only with pure strategies.

Definition 1. A deviation s′i of player i at profile s = (si, s−i) is profitable if
ui(s

′
i, s−i) > ui(si, s−i).

When a player takes Nash logic she supposes that no reaction of other
player will follow after her deviation and so such a deviation will increase
her payoff irreversibly and in a certain way. Under assumption of iterated
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thinking a player expects some reaction of the opponent. We propose that
if the agent doesn’t know the depth of opponent’s iteration than she has no
grounds to make an unambiguous prediction of other player behavior. The
only reasonable guess is that the opponent will not act to her own detri-
ment. Such an uncertainty leads to additional requirement for deviation to
be profitable in view of possible responses and, as a result, more cautious
behavior.

Definition 2. A deviation s′i of player i at profile s = (si, s−i) is secure if for
any profitable deviation s′−i of the opponent at intermediate profile (s′i, s−i)
player i is not worse off:

ui(s
′
i, s
′
−i) ≥ ui(si, s−i).

Definition 3. A strategy profile is a Nash-2 equilibrium if no player has a
profitable and secure deviation.

We will denote the set of Nash-2 equilibria by NE-2.
In other words, players do not realize some profitable deviations so far

as they fail to remain gainful after some reasonable reaction of other player.
Obviously, any Nash equilibrium is also a Nash-2 equilibrium. Moreover,
more elegant intuitive division of Nash-2 profiles can be given. Profitable
deviations (they may exist at Nash-2 equilibrium, but they are not secure) can
be of two types. The first kind is harmful for the opponent (such deviations
are referred to as threats [20]), while the second type is not.

Definition 4. A threat of player i to player −i at strategy profile s is a
strategy s′i such that

ui(s
′
i, s−i) > ui(si, s−i) and u−i(s

′
i, s−i) < u−i(si, s−i).

The strategy profile s is said to pose a threat from player i to player −i. A
strategy profile s is secure for player i if s poses no treats from other players
to i.

So, the set of Nash-2 equilibria can be naturally divided into two sets:
secure profiles and risky outcomes. Secure part itself forms the set of equilib-
rium in secure strategies (intuitive formulation is contained in [20]). Strictly
speaking, the definition of equilibrium in secure strategies is formulated as
follows.

Definition 5. A strategy profile is an equilibrium in secure strategies (EinSS)
if
i) it is secure,
ii) no player has a profitable and secure deviation.
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The interpretation of such a division is the following. Secure part can be
regarded as a tough competition where agents avoid any possible threats, even
non-credible. It often leads to the situations with low profits since players in
such situations have nothing to lose [22].

On the other hand, risky situations (NE-2 \ EinSS) are characterised by
the observation that agents have opportunities to harm one to another, but
they do not actualize these threats because of possible credible ”counter-
sanctions”. In a number of situations such a cautious (but not overly) be-
havior enables agents to hold on higher profits than in case when players also
care about security. Detailed examples will be presented in Sect. 4.

2.2 Related concepts

2.2.1 Graph model of conflict resolution

The idea of accounting ambiguous responses to one’s own unilateral improve-
ments has been elaborated in the graph model of conflict resolution theory,
a methodology for analyzing real-word conflicts [8]. These authors proposed
a new theory for non-cooperative games allowing players to make moves and
chains of counter-moves with some limited horizon, and to carry out non-
myopic calculations. Their analysis focuses on 2 × 2 games and points out
the importance of starting point, threat power, and abilities of players to
think ahead for prediction of stable outcomes. Motivation of applicability
of the new theory to modeling real-life situations presented in [8] and [27]
is entirely suitable for the theory of Nash-2 equilibrium that we develop.
Moreover, in contrast with graph model approach accounting only ordinal
preferences Nash-2 equilibrium allows to make more accurate description of
stable situations for models with a large (sometimes, infinite) number of pos-
sible game situations.

The most close concept to Nash-2 equilibrium within this non-myopic
theory of conflict resolution is the sequential stability concept [15]. Let us
reformulate the definition of sequentially stable state here in terms of two-
person game in normal form introduced in Sect. 2.1. (we use the definition
from [14])

Definition 6. For a two players N = {i, j} and a conflict G, an outcome
sSEQ ∈ S is sequentially stable for player i iff for every unilateral profitable
deviation of player i to profile s1 there exists a unilateral profitable deviation
of player j from s1 to s2 such that ui(s) ≥ ui(s2). A state is sequentially
stable for the conflict iff it is sequentially stable for both players.

This definition differs from definition of Nash-2 equilibrium only in the
strictness of the last inequality. Obviously, in 2-person game if profile s is a
Nash-2 equilibrium, then s is a sequentially stable state.
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Despite the similarity of these two concepts, the difference turns out to be
truly significant for specific models. Striking example is the basic Bertrand
model of price competition.

Example 1 (Bertrand competition with homogeneous product). Consider two
firms producing a homogeneous product with equal marginal costs c. Let p1

and p2 be the prices proposed by firms 1 and 2, respectively. Consumers buy
the product with lowest price, the demand being a linear function of the price
Q(p) = 1− p. Firms’ profits are given by the following function

πi(p1, p2) =

 (pi − c)(1− pi), if pi < p−i,
(pi − c)(1− pi)/2, if pi = p−i,
0, if pi > p−i,

i = 1, 2

Nash-2 concept states that an equilibrium might be with any price level
p = p1 = p2 ∈ [c, 1]. In particular, NE-2 includes the collusive (monopoly)
price level p = 1+c

2 . Indeed, without loss of generality assume that the firm
1 proposes a prise p1 > p2, and gets zero profit. Then this firm can undercut
the firm 2 and set the prise p2−ε with sufficiently small ε. Its deviation from
the strategy p1 to p2− ε is profitable. Moreover, it is also secure as the worst
that can happen with the firm 1 is that the firm 2 in turn undercuts it and
the firm 1 comes back to zero profit. So, any situation with p1 6= p2 is not a
Nash-2 equilibrium.

On the contrary, in case of sequential stable state a possibility for the
firm 1 to return to initial profit level immediately means that a situation
with p1 > p2 occurs to be sequentially stable. So, according to Definition 6
any profile in Bertrand duopoly is sequentially stable.

This example demonstrates the crucial importance of allowing players to
deviate from the initial state even if there is a slight possibility to come back
to initial profit.

2.2.2 Equilibrium in secure strategies

One more game theoretical approach close to ours introduces a security as
an additional motivation for players’ behavior. Two second-stage-foreseeing
concepts that have been proposed are bargaining set based on the notion of
threats and counter-threats (for cooperative games, see [2]) and equilibrium
in secure strategies (EinSS, see [20]). The idea of both concepts is that players
worry not only about own first-stage payoffs and opponents’ responses, but
also about the absence of harmful actions (”threats”) of the opponents. On
grounds of security several attempts to introduce the concept equivalent to
Nash-2 equilibrium (independently of our study) have been made: they are
threatening-proof profile [21], equilibrium contained by counter-threats [23],
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and equilibrium in threats and counter-threats [24]. These are different names
of the same as Nash-2 equilibrium concept, but motivated by security logic
of decision making1.

The key point of this paper is that Nash-2 equilibrium outcomes are sup-
ported by farsightness of agents and includes secure and non-secure situ-
ations, and they are regarded as various degrees of competition toughness
among them.

The following relation for two-person games takes place [21]: any NE is
an equilibrium in secure strategies, and any equilibrium in secure strategies
is a Nash-2 equilibrium2. The converse is generally not true.

2.2.3 Equilibrium in double best responses

In Nash-2 definition of secure deviation each player accounts all profitable
responses of the opponent. The restriction of the range of profitable oppo-
nent’s deviations to the set of her best responses is developed in [19], [4],
which introduce the similar concepts of equilibrium: cooperative equilibrium
and equilibrium in double best responses. Let us reproduce the main defini-
tions from [4].

Definition 7. Best response of player i to a situation s = (si, s−i) is an
action BRi(si, s−i) = arg maxs′i∈Si

ui(s
′
i, s−i). Double best response of player i

to a situation s = (si, s−i) is an action

DBRi(si, s−i) = arg max
s′i∈Si

ui(s
′
i, BR−i(s

′
i, s−i)).

A profile s is an equilibrium in double best responses if for any player i si =
DBRi(s).

In other words, in equilibrium in double best responses no player has a
deviation which after opponent’s best response on it leads the player who
deviates the first to more profitable situation than the initial one. Such a
concept provides an efficient equilibrium for some class of network formation
games (see [4]), or for coordination games. However, the problem of consis-
tency of such a concept arises by analogy with the criticism of conjectural
variation approach.

Though for some games an equilibrium in double best responses coincides
with Nash-2 equilibrium (for instance, in 2-person Prisoner’s dilemma), in
general it is equivalent neither to Nash-2 equilibrium, nor to equilibrium in
secure strategies.

1We will accurately refer to existence results during the further exposition in case of some intersection.
2Authors formulated this result in terms of threatening-proof profile.
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Example 2. Consider the following game which does not have pure Nash
equilibrium.

L C R
T (1.5,3) (0,0) (4.5,0)
B (2,0) (0,1) (2.5,2)

(T,L) is a Nash-2 equilibrium, but it is not an equilibrium in secure strate-
gies and not an equilibrium in double best responses. (B,C) is a Nash-2
equilibrium, an equilibrium in secure strategies and an equilibrium in double
best responses. (B,R) is a Nash-2 equilibrium, an equilibrium in double best
responses, but it is not an equilibrium in secure strategies.

This example shows how all three concepts could predict the worst equi-
librium with payoffs (0,1), but only Nash-2 equilibrium concept catches the
best for player 2 outcome (T,L).

2.2.4 Explicit and tacit collusion

As it has been already stated in the paper, Nash-2 equilibrium is often
a suitable explanation for the phenomenon of tacit collusion between two
player. Naturally, the question on the relation of Nash-2 equilibrium and
explicit collusion (cooperative behavior) arises. In the example 2 three pro-
files (T,L),(T,R), and (B,R) can be chosen during cooperation; nevertheless,
only (T,L) and (B,R) is supported by non-cooperative concept of Nash-2
equilibrium. It is to be mentioned that they are risky outcomes.

In the general case of two-person game, if explicit collusion is a Nash-2
equilibrium then it is in NE-2 \ EinSS, or more strictly:

Theorem 1. If a collusion outcome is not a Nash equilibrium then it is not
a secure profile.

Proof. Let (sc1, s
c
2) = arg maxs1,s2(u1(s1, s2) + u2(s1, s2)). Assume that it is

secure. It means that it poses no threats from one to another. The two cases
are possible: there no profitable deviations and for any profitable deviation
s1 → s′i of player i the another player is not worse off u−i(s

′
i, s−i).

In the first case we deal with NE. In the second case ui(s
′
i, s−i)+u−i(s

′
i, s−i) >

u1(s
c
1, s

c
2)+u2(s

c
1, s

c
2) and this contrary to the fact that (sc1, s

c
2) is collusive out-

come.
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3 Existence and multiplicity of Nash-2 equi-
librium in 2-person games

3.1 Existence for finite 2-person games

An important advantage of Nash-2 equilibrium concept is that it exists in
most games and fails to exist only in ”degenerate” cases. Let us start with
finite games and formulate this idea accurately. For this purpose we introduce
the notion of secure cycle.

Definition 8. A path of profiles {(sti, st−i)}t=1,...,T is called a secure path of
length T if each its arc (sti, s

t
−i) → (st+1

i , st+1
−i ) = (st+1

i , st−i) is a secure prof-
itable deviation from sti to st+1

i for some player i. This path is called a secure
cycle if it is closed: (s1

i , s
1
−i) = (sTi , s

T
−i), minimum of such a T is called a

length of cycle.

Using this notion one can easily check the following theorem providing
the criterion for the absence of Nash-2 equilibrium in some game.

Proposition 1. The finite 2-person game in normal form does not have a
Nash-2 equilibrium if and only if it contains at least one secure cycle of finite
length, and there is a finite secure path from any profile to some secure cycle.

Proof. Assume that no profile is a Nash-2 equilibrium, then from any profile
a profitable secure deviation exists at least for one player. Without loss of
generality, assume that player 1 deviates at odd steps while player 2 devi-
ates at even ones. For any secure path starting from (s1

1, s
1
2) the following

inequalities holds

u1(s
2t+1
1 , s2t+1

2 ) ≥ u1(s
2t+3
1 , s2t+3

2 ), t = 0, 1, . . . ,

u1(s
2t+1
1 , s2t+1

2 ) > u1(s
2t+2
1 , s2t+2

2 ), t = 0, 1, . . . ,

u2(s
2t
1 , s

2t
2 ) ≥ u2(s

2t+2
1 , s2t+2

2 ), t = 1, . . . ,

u2(s
2t
1 , s

2t
2 ) > u2(s

2t+1
1 , s2t+1

2 ), t = 1, . . . .

Since the game is finite, at some moment Θ < ∞ (and not exceeding
the number of possible game profiles) this path necessarily starts to reach
the same situations again and forms a cycle of length T ≤ Θ. Moreover,
in order for this to be possible it is necessary and sufficient that all non-
strict inequalities above become equalities for all profiles forming the secure
cycle.
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An important observation that secure cycles are very special: all nodes
where player 1 deviates should have the same payoff for this player

u1(s
2t+1
1 , s2t+1

2 ) = u1(s
2t+3
1 , s2t+3

2 ) ∀t,

the same is true for even nodes and player 2: (u2(s
2t
1 , s

2t
2 ) = u2(s

2t+2
1 , s2t+2

2 )).

Corollary 1. Whenever a game does not have NE-2, any perturbation of
payoffs that breaks at least one equality for payoffs in secure cycle yields NE-
2 existence.

Example 3 (Heads or Tails).

R L
T 1 -1
B -1 1

R L
T 1.01 -1
B -1 1

Left matrix corresponds to a well-known zero-sum game ”Heads or Tails”.
In this game all profiles form a secure cycle and Nash-2 equilibrium does not
exist. But a small perturbation of just one payoff (see the right matrix)
immediately yields that (B,L) becomes a Nash-2 equilibrium.

Every 2-person game with n strategies for player 1 and m strategies for
player 2 can be associated with a point in R2nm (ordered payoffs for each pair
of strategies are coordinates of this point). So, we can define the measure on
the set of games as a measure of corresponding subset in Euclidean space.

The minimum length of secure cycle is four, and at least two equalities on
payoffs should take place for a game not to have a Nash-2 equilibrium. So,
the dimension of the subset of all such games does not exceed 2nm− 2, and
this subset has measure 0 in R2nm. So, the following theorem holds.

Theorem 2. Nash-2 equilibrium exists in almost every 2-person finite game.

Note that Theorem 2 demonstrates the existence of NE-2 but not the
optimal algorithm of finding it in arbitrary game.

3.2 Existence for 2-person games with infinite number

of strategies

Logic underlying discrete games can be easily extended to the case of infinite
number of strategies. Loosely speaking, we need the boundedness of utility
function and some condition ensuring the sequence of utilities in secure path
to grows up to the limit value not too slowly.

11



One way is to define an ε-equilibrium and claim the existence of ε-
equilibrium for 2-person games with some condition on the limit of utilities.
This approach is realized in [23, Propositions 2 and 8].

We develop other ideology for games with infinite strategy sets (continu-
ous or discontinuous 2-person games). The only reason why the logic of Sect.
3.1 may fail is that if players are permitted to use hardly different strategies
they may ensure very slow but infinite growth of profits. In order to exclude
such possibility we consider the games in which a deviation is costly. We now
assume that a player have to pay some fixed cost d ≥ 0 for any unilateral
changing of her strategy, we call d a cost of deviation.

Then, definitions 1 and 2 can be rewrite as following.

Definition 9 (1?). A deviation s′i of player i at profile s = (si, s−i) is profitable
if ui(s

′
i, s−i) > ui(si, s−i) + d.

Definition 10 (2?). A deviation s′i of player i at profile s = (si, s−i) is secure
if for any profitable deviation s′−i of the opponent at intermediate profile
(s′i, s−i) player i is not worse off:

ui(s
′
i, s
′
−i) ≥ ui(si, s−i) + d.

Note that these definitions coincide with definitions 1 and 2, respectively,
if d = 0. The definition of Nash-2 equilibrium remains the same.

Note that introducing any d > 0 guarantees that the game does not
contains any secure cycle. Similarly to Theorem 2, the following theorem
holds.

Theorem 3. Nash-2 equilibrium exists in every 2-person game with strictly
positive cost of deviation and utility functions bounded from above.

It is to be stressed that we do not require the continuity of utilities or
compactness of action sets. Moreover, for most games Nash-2 equilibrium
exists even in case of zero cost of deviations. Examples in Sect. 4 will
completely demonstrate this.

3.3 Selection among multiple equilibria profiles

The reverse side of existence is multiplicity of predicted outcomes. This
problem can be resolved in several ways in dependence of concrete game
framework.

In the case of tough competition between firms one can choose, for in-
stance, an equilibrium in secure strategies as the most attractive. In Hotelling
linear city model EinSS concept provides the unique equilibrium correspond-
ing to dumping pricing [22].
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The totally different approach is to choose the collusion outcome like in
Bertrand or Cournot model or, at least, Pareto efficient profiles in the set of
Nash-2 profiles.

If players join the game successively, one after another, then Nash-2 equi-
librium is an operative explanation why Stackelberg leadership outcome re-
mains stable. In games with such a history of events Stackelberg equilibrium
can be selected as a concrete Nash-2 profile. An example is Cournot duopoly.

Alternative way of solving the problem is to introduce the measure on the
set of Nash-2 equilibria that reflects the probability with which a concrete
equilibrium can be realized. This can be done in different ways, and we
present here one of them.

We suppose that originally players randomly get into any game profile s

with equal probabilities ν0(s) = µ(s)
µ(S1×S2) , where µ(A) is a measure of the set A.

If the profile s is not a Nash-2 equilibrium then a secure path from this profile
to some Nash-2 profile exists. Denote the subset of NE-2 that can be achieved
from the profile s by any secure path by NE-2s. For simplicity we assume
that when a player learns the whole range of reachable from s Nash-2 profiles
she chooses each of them also with equal probabilities. (Naturally, more
complicated method is to assign a probability proportional to the number of
secure paths from s to concrete Nash-2 equilibrium.) So, the final probability
of each Nash-2 profile to be realised is

ν(s) =
µ(s)

µ(S1 × S2)
+

∑
s̃:s∈NE-2s̃

µ(s̃)

µ(NE-2s̃)µ(S1 × S2)
, ∀s ∈ NE-2.

These probabilities form the measure of feasibility on the set NE-2.
If a Nash-2 profile s is not reachable from any point of S1 × S2 (we will

call it isolated), then ν(s) = ν0(s).
For the sake of visualization in the case of discrete action sets let us

construct a directed graph Γ by the following rule. The nodes of Γ are game
profiles. The directed link from node s to node s′ exists if there is a secure
path from s to s′, and there are no secure paths starting at s′.

In this graph the nodes with zero outdegree deg+(s) are Nash-2 equilibria.
The links demonstrate how not Nash-2 profiles transmit their initial proba-
bilities to Nash-2 profiles by means of secure paths. Here for all s ∈ NE-2
the number of all profiles from which a secure path to s exists equals to the
indegree deg−(s) of s in Γ. In particular, if ∀s ∈ Γ deg+(s) ≤ 1, then

ν(s) =
1

|S1| · |S2|
(
1 + deg−(s)

)
, ∀s ∈ NE-2,

|A| is the number of elements in the set A.
Let us give several examples.
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Example 4.
In this example two situations in this game are Nash-2 equilibria, players

get zero profits in both. Indeed, strategy profile (B,R) is a NE and Nash-2
equilibrium, and profile (B,L) is a Nash-2 equilibrium, but not a NE.

L R
T 1 -1
B 0 0

The graph Γ is shown on the right. As one can see, (B,L) is an isolated
Nash-2 profile, thus ν(B,L) = 1/4.

deg−(B,R) = 2. Thereby, ν(B,R) = 1
4(1 + 2) = 3/4.

The probability of NE to be realized is considerably greater than for the
another profile.

Example 5.
In this example Nash equilibrium fails to exist.

L R
T (2/3, 1/3) (-1, 2)
C (1/2, 1/2) (1, 0)
B (1, 0) (0, 1)

NE-2 set consists of two strategy profiles (C,L) and (T,L) with profits
(1/2, 1/2) and (2/3, 1/3), respectively. (T,L) is an isolated Nash-2 equilib-
rium, thus ν(T, L) = 1/6. deg−(C,L) = 4. Thereby, ν(C,L) = 1

6(1 + 4) =
5/6.

Hence, though at first sight two Nash-2 profiles are similar, it is much
more plausible that (C,L) will occur.

Example 6 (Bertrand model with homogeneous product).
Consider the simplest model of price competition, as in Example 1. In this

case there is a secure path from each profile (p1, p2), p1 6= p2, p1, p2 ∈ [c, 1], to
Nash-2 profile (p, p) with p ∈ [c,min(p1, p2)]. Figure 1 reflects the structure
of possible secure paths in this game.

Explicit calculations yield (see Figure 2)

ν(p, p) =
2

1− c

(
ln

1− c
p− c

− 1− p
1− c

)
, ∀p ∈ [c, 1].

One can think about this measure function in the sense that the probabil-
ity to come into the ε-neighbourhood of the prices (p, p) is

∫ p+ε
p−ε ν(x)dx. Note

that the probability of low prices close to marginal cost is appreciably greater
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Figure 1: The structure of secure paths in Bertrand model
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Figure 2: The measure of feasibility on the set NE-2 in Bertrand model with
c = 0.1

than that for high prices. It is caused by the high appeal of undercutting
an opponent. However, the collusion price level (1+c

2 , 1+c
2 ) also has a positive

measure of feasibility.

4 Examples

Let us turn now to some applications of Nash-2 equilibrium concept to well-
known microeconomics models. We will start with Cournot duopoly with
homogeneous product, linear demand, and equal marginal costs, and demon-
strate in terms of Nash-2 equilibrium whether the possibilities for collusion or
more strong competition actually exist. Then we examine the model of price
competition of firms producing imperfect substitutes. Finally we will discuss
the computational solution of rent-seeking game (Tullock contest) and outline
the difference between secure-but-strong-competitive and risky-but-collusive
outcomes.

15



4.1 Cournot duopoly

Let two firms produce q1 and q2 units of homogeneous product, respectively,
with equal constant marginal costs c per unit. We assume the equilibrium
price p(Q) to be a linear decreasing function p(Q) = 1 − Q of total output
Q = q1 + q2. The profit function of the firm i = 1, 2 is

πi(q1, q2) = qi · (p(Q)− c) = qi(1− q1 − q2 − c).

In Nash equilibrium firms produce by one third of maximal total output
which ensures positive prices on the market

q∗1 = q∗2 =
1− c

3
, π∗1 = π∗2 =

(
1− c

3

)2

.

Theorem 4. Nash-2 equilibria (q1, q2) are of two kinds:
a) they belong to the set{(

b;
1− c− b

2

)
∪
(

1− c− b
2

; b

)
| b ∈

[
1− c

3
; 1− c

)}
.

b) they are
q1 = q2 ∈ (0, (1− c)/3)

including collusive outcome (1− c)/4, (1− c)/4.

Figure 3: Bold point is NE, NE-2. Bold lines are NE-2.

One can easily check that the equilibrium set satisfying condition (a) con-

sists of secure profiles. For b ∈
(

1−c
3 ; 2(1−c)

3

)
such situations are fruitful for

the firm that overproduces, and maximum is reached at b = 1−c
2 , and for any
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b they are bad for the another firm (in comparison with Nash equilibrium
profits). A special cases of secure Nash-2 equilibrium are Stackelberg out-
comes

(
1−c

2 ; 1−c
4

)
if the firm 1 is a leader, and

(
1−c

4 ; 1−c
2

)
if the firm 2 is a

leader.
The set NE-2\EinSS (condition (b)) includes collusive outcome. Hence, in

Cournot duopoly collusion is strategically (tacitly) supported by the concept
of Nash-2 equilibrium. The profiles with q1 = q2 ∈

(
1−c

4 , 1−c
3

)
cover all

intermediate situations between Nash competition and cooperative behavior.

Proof. Reaction functions of both firms are

r1(q2) = (1− c− q2)/2, r2(q1) = (1− c− q1)/2.

Note that any decreasing of production of any player is profitable for
her opponent. It immediately yields that if for one player it is profitable to
decrease her price then another player (if she is not at her best response)
has a profitable secure deviation. Therefore, such situations are not Nash-2
equilibria.

If one player (for definiteness, the firm 1) plays exactly her best response
on the firm’s 2 output, while the firm 2 produces more than it best response
level, then such a situation is a Nash-2 equilibrium. Indeed, the firm 1 hasn’t
a profitable deviation, and any profitable deviation of the firm 2 decreases
the output: q2 → q2− ε, for some ε > 0. However, if the firm 2 deviates then
the firm 1 acquires a profitable deviation q1 → q1 + ε− δ with enough small
0 < δ < ε such that the deviation q2 − ε is not secure for the firm 2.

Now turn out to the case when both firms produce less than best response
level: q1 ≤ (1− c− q2)/2 and q2 ≤ (1− c− q1)/2.

Assume first that q1 > q2 (the symmetric case is similar). Then the firm
2 has the profitable secure deviation from q2 to 1 − c − q1 − q2 − ε with
0 < ε < q1 − q2. After this q1 becomes greater than new best response level
and any profitable deviation of the firm 1 decreases q1 which is acceptable
for the firm 2.

The last possible situation is q1 = q2 = q. Let us show that (q, q),
q ≤ (1 − c)/3, is a Nash-2 equilibrium. Let us carry out the reasoning for
the firm 1. Any profitable deviation of the firm 1 has a form q1 → q+ ε with
0 < ε < 1− c− 3q. After this the firm 2 has the profitable deviation from q2

to 1− c− 2q− ε− δ which leads to breaking the security requirement for the
firm 1 if 0 < δ < q

q+ε(1− c− 3q − ε).

Nash-2 equilibrium provides a number of regimes with various degree
of toughness from competitive till collusive. An explanation what outcome
will be observed can be given on the base of the oligopolistic equilibrium [1]
suitably generalizing conjectural variation approach and introducing an extra
coefficient of competitive toughness.
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4.2 Bertrand competition with differentiated product

Consider more general model of price competition between two firms produc-
ing imperfect substitutes with marginal costs equal c1 and c2, respectively.
The coefficient of substitution is γ ∈ [0, ∞). Firms’ demand curves are

q1 = 1− p1 − γ(p1 − p2), q2 = 1− p2 − γ(p2 − p1).

The firms’ profits are

π1(p1, p2) = (p1 − c1)(1− p1 − γ(p1 − p2)).

π2(p1, p2) = (p2 − c2)(1− p2 − γ(p2 − p1)).

The case of γ = 0 corresponds to the monopoly. When γ → ∞ the
product becomes more and more homogeneous.

In Nash equilibrium prices are equal to

p∗1 =
2 + 3γ + 2(1 + γ)2c1 + γ(1 + γ)c2

(2 + 3γ)(2 + γ)

p∗2 =
2 + 3γ + 2(1 + γ)2c2 + γ(1 + γ)c1

(2 + 3γ)(2 + γ)
,

if p∗1 ≥ c1, p
∗
2 ≥ c2.

If marginal costs are equal c1 = c2 = c, then p∗1 = p∗2 = 1+(1+γ)c
2+γ > c. As

γ →∞ we face to classical Bertrand model.
Let us describe the conditions which the set of Nash-2 profiles (p1, p2)

meets.
Note firstly that two following conditions mean that markup and demand

at equilibrium should be non-negative

p1 ≥ c1, p2 ≥ c2, a)

q1(p1, p2) ≥ 0, q2(p1, p2) ≥ 0. b)

The next condition states that only prices exceeding best response level
can be a Nash-2 equilibrium, i.e.

p1 ≥
1 + γp2 + c1(1 + γ)

2(1 + γ)
, p2 ≥

1 + γp1 + c2(1 + γ)

2(1 + γ)
. c)

One more claim is that in Nash-2 equilibrium the firms get not less than
their maxmin benefits

π1(p1, p2) ≥
(1− c1(1 + γ))2

4(1 + γ)
, π2(p1, p2) ≥

(1− c2(1 + γ))2

4(1 + γ)
. d)
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The last conditions directly state the absence of secure profitable devia-
tions (

1−c1
2 −

γ(1+γ)(p2−c2)
2(1+2γ)

)(
1+2γ+γ2c2−(1+γ)2c1

2(1+γ) + 3
2(p2 − c2)

)
≤ π1(p1, p2),(

1−c2
2 −

γ(1+γ)(p1−c1)
2(1+2γ)

)(
1+2γ+γ2c1−(1+γ)2c2

2(1+γ) + 3
2(p1 − c1)

)
≤ π2(p1, p2).

e)

Figure 4: c1 = c2 =
0.5, γ = 2. Bold
point is NE, EinSS, NE-
2. Shaded area is NE-2.

Figure 5: c1 = 0.5, c2 =
0.3, γ = 2. Bold
point is NE, EinSS, NE-
2. Shaded area is NE-2.

Figure 6: c1 = 0.5, c2 =
0.1, γ = 2. Bold
point is NE, EinSS, NE-
2. Shaded area is NE-2.

Figure 7: c1 = c2 =
0, γ = 2. Bold point
is NE, EinSS, NE-2.
Shaded area is NE-2.

Figure 8: c1 = c2 =
0, γ = 7. Bold point
is NE, EinSS, NE-2.
Shaded area is NE-2.

Figure 9: c1 = c2 =
0, γ = 15. Bold
point is NE, EinSS, NE-
2. Shaded area is NE-2.

Proof. Let us start with the observation that, in contrast to Cournot duopoly,
any increasing price of any firm is profitable for her opponent. From this fact
it follows that if one firm assign a price that is less than best response level
then it has a profitable and secure deviation. It provides condition (c).
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Condition (d) immediately follows from the fact that if a firm gets less
than minmax value then it has a profitable secure deviation to the strategy
which ensures it.

Now look at the residual area and establish which situations are Nash-2
equilibria. In this area firms propose prices more than at best response level
(condition (c)). Let us look on the situation by the firm 1. Any profitable
deviation of the firm 1 decreases the price p1 up to some p̃ε1 = p1 − ε with

ε ∈
(

0; 2
(
p1 − 1+γp2+c1(1+γ)

2(1+γ)

))
. The most harmful response of the firm 2 is

maximal decreasing the price: p2 → p̃ε2 = 2 · 1+γ(p1−ε)+c2(1+γ)
2(1+γ) − p2 + δ with

δ = +0.
If (p1, p2) is Nash-2 profile then for any ε firm 1 should get worse:

π1(p̃
ε
1, p̃

ε
2) < π1(p1, p2),

or, equivalently, maxε π1(p̃
ε
1, p̃

ε
2) < π1(p1, p2).

Explicit calculation of this maximum provides condition (e).

As we can observe the set of Nash-2 equilibria becomes more asymmetric
as the difference between marginal costs increases (see Fig. 4 – 6). On the
other hand it becomes narrower and elongate as γ →∞ (see Fig. 7 – 9) and
this asymmetry ceases to play an important role.

Note that in the case of c1 = c2 = c the collusion profile p1 = p2 = (1+c)/2
is inside Nash-2 set. Nevertheless, another outcomes on the Pareto frontier
of the set of profits at Nash-2 profiles exist.

4.3 Tullock contest

In rent-seeking modeling most papers focus on the manipulation efforts of
firms to gain monopolistic advantages in the market. Tullock contest [29] is a
widespread way to examine the processes of political lobbying for government
benefits or subsidies, or to impose regulations on competitors in order to
increase market share.

The contest success function translates the efforts x = (x1, x2) of the
players into the probabilities pi that player i will obtain the resource R.

pi(xi, x−i) =
xαi

xαi + xα−i
, x 6= 0, i = 1, 2.

If x = (0, 0) then pi = p−i = 1/2.
The payoff function of each player is:

ui(xi, x−i) = Rpi(xi, x−i)− xi.
Without loss of generality assume R = 1, xi ∈ [0, 1].
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The players’ behavior essentially depends on the value α. It can be treated
as a responsiveness of the utility function to increasing the effort. When
α ≤ 2 Nash equilibrium exists and equilibrium efforts equal to α/4. In [25]
the equilibrium in secure strategies in Tullock model was obtained for all α.
Here we present the computer solution for the whole set of Nash-2 equilibrium
(see Fig. 10 – 12).

Figure 10: α = 0.7.
Bold point is NE,
EinSS, NE-2. Shaded
area is NE-2.

Figure 11: α = 1.5.
Bold central point is
NE, EinSS, NE-2. Bold
curve and points on the
axes are EinSS, NE-2.
Shaded area is NE-2.

Figure 12: α = 2.3.
Bold points are EinSS,
NE-2. Shaded area is
NE-2.

Note that all equilibria in secure strategies, and in particular Nash equi-
librium, are Pareto dominated by some Nash-2 profiles (see Fig. 13)

Figure 13: α = 1.5. Efforts and profits. Bold curves and points on the
axes are profits at equilibrium in secure strategies (and Nash-2 equilibrium),
shaded area is the set of profits at risky Nash-2 profiles.
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The set NE-2 \ EinSS seems to be intuitively clear: farsighted players in
some sense are engaged in tacit collaboration and make smaller efforts to
reach the same probability of obtaining the resource. This is what we mean
by tacit collusion.

Remark 1 (on the efficiency of equilibrium obtained). By the measure of
solution efficiency in rent-seeking game a rent dissipation is often used. If
R = 1 then it is the sum of agent efforts at equilibrium. If α ≥ 2 rent
dissipation in Nash equilibrium is equal to α/2. The paper [3] shows that
when α > 2 and the strategy space is continuous full rent dissipation occurs in
symmetric mixed-strategy equilibrium. It follows from our simulations that
there are a wide range of risky Nash-2 equilibria that are more efficient than
Nash pure or mixed strategy equilibrium for any α. To be exact, for α ≤ 2
any risky Nash-2 equilibrium together with some secure Nash-2 equilibrium
(for accurate characterization of secure part see [25]) are more efficient. For
α > 2 some part of risky Nash-2 equilibria (in which x1 + x2 < 1) and only
”monopolistic” (when only one player makes positive efforts) secure Nash-
2 equilibria are more efficient. However, it is to be noted that sometimes
zero efforts for one participant of the contest are not allowed by rules of
the contest (for instance, if in this case the tender will not take place), then
only risky Nash-2 profiles ensure smaller rent dissipation than mixed-strategy
Nash equilibrium.

5 Extension to n-person games

The idea of an extension for n players is inspired by spatial economics notion
of direct and indirect competitors [18]. In a game with large number of
players it is natural to assume that each player divides her opponents into
direct competitors whose reaction she worries about and tries to predict,
and indirect competitors whose strategy is believed to be fixed as in Nash
equilibrium concept. Such a selective farsightness looks more plausible than
total ignorance of reactions or perfect prediction of future behavior of all
other competitors. If we connect direct competitors by a directed link we
get the network structure (so-called, reflection network) on the set of players.
A player when decide whether to deviate or not accounts possible unilateral
profitable responses of her neighbours in the reflection network, including
simultaneous but non-cooperative responses of several other players.

The set of Nash-2 equilibrium crucially depends on the topology of reflec-
tion network. We illustrate this idea with the models of Bertrand competition
and Prisoner’s dilemma [30] with n participants and provide solutions of them
for various types of reflection network.

22



5.1 Reflection network

Consider an n-person non-cooperative game in the normal form

G = (i ∈ I = {1, . . . , n}; si ∈ Si; ui : S1 × . . .× Sn → R),

where si, Si and ui are the strategy, the set of all available strategies and the
payoff function, respectively, of player i, i = 1, . . . , n.

Let us define the reflection network g by the following rule:

• nodes are players i in I;

• links gij = 1 from player i to j exists iff player i takes into account
possible profitable deviations of player j.

• gij = 0, otherwise.

Note that the reflection network is a directed graph. One can think about
the reflection network in the following terms:

• Agents follow up some control sample of firms (direct competitors),
taking strategies of other firms as given.

• Agents follow up geographically close competitors (spatial competition
approach).

• Agents take into account reactions of only those firms, whose utility
functions are exactly known to them.

The definition of profitable deviation of player i is the same as Def. 1,
where s−i is the strategy profile of all prayers except i.

Denote by Ni(g) the set of neighbours j of player i in the graph g, such
that gij = 1.

Definition 11 (secure deviation). A deviation s′i of player i at profile s =
(si, s−i) is secure if for any subset J ⊆ Ni(g) and any profitable deviation s′j of
every player j ∈ J at intermediate profile (s′i, s−i) even in case of simultaneous
deviations of all players from J player i is not worse off, i.e.

ui(s
′
i, s
′
J , s−iJ) ≥ ui(s).

Here we assume that all players act independently (non-cooperative), but
they are able to deviate simultaneously, so that player i should take this
possibility into consideration.

If Ni(g) = ∅ then player i does not worry about any possible reactions,
and so every her deviation is secure by definition. We will call this situation
fully myopic behavior.
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Definition 12 (NE-2). A strategy profile is a Nash-2 equilibrium if no player
has a profitable secure deviation.

It is easy to see that every Nash equilibrium profile is also a Nash-2 equi-
librium irrespectively of the architecture of the reflection network. Moreover,
in the case of empty reflection network they are coincide by definition. It is
only in this sense we may regard Nash equilibrium as fully myopic concept.

5.2 Examples

5.2.1 Bertrand competition with homogeneous product

Consider the simplest model of price competition of n firms, concentrating at
one point and producing homogeneous goods. Assume that they have equal
marginal costs, the demand is linear,

πi(p1, . . . , pn) =

{
(pi − c)(1− pi)/K, if pi = min{pj},
0, if pi > pj for some j 6= i,

where K is the number of firms setting the minimum price pi.
Nash solution yields the unique equilibrium, firms getting zero profits

and equally sharing the market. Nevertheless, in case of non-trivial reflec-
tion network equilibrium set occurs considerably wider, and in some cases of
reflection network Bertrand paradox is resolved.

Really, if each firm takes into account possible deviations of at least one
other firm, or, in graph terminology, if for all nodes i in the network g their
out-degree is greater or equal to 1 (see Fig. 14), then any price level greater
than marginal costs is also a Nash-2 equilibrium, together with Nash equi-
librium prices.

Figure 14: Complete and cycle reflection networks with 4 players, out-degree
of every player is not less than 1

Nevertheless if at least one firm is fully myopic (see Fig. 15), then the
only Nash-2 equilibrium coincides with Nash solution.

It is due to the threshold structure of demand: every infinitesimal de-
creasing price relative to common price level leads to the immediate winning
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Figure 15: The reflection networks with 4 players, player 4 is fully myopic

all the market. Thus, this model is extremely sensitive to such a myopic
deviations of any firm, and even one firm acting in a fully myopic way can
break insecure tacit cooperation. There is no ability for cooperation among
only some part of firms.

5.2.2 Prisoner’s dilemma

Consider the model of n-player prisoner’s dilemma as it introduced in [30].
Each player has two possible strategies: to cooperate with the community or
to defect. The utility function is

ui =

{
bA/n− c, if player i cooperates,
bA/n, if player i defects,

where A is a number of cooperators in the game, each of them brings profit
b to the society, but pays the cost c. The total profit is equally divided to
all n players irrespective of their real contribution. Unilateral defection is
preferred for each individual c > b

n , nevertheless, full cooperation is more
preferred for each player than common defection b > c > 0.

According to Nash rationality, cooperation is unlikely to emerge in the
n-player prisoner’s dilemma, and the same result is predicted by the evolu-
tionary game theory [7].

But in the case of a non-empty reflection network cooperation is possible
and, moreover, the number of cooperators depends both on the architecture
of network and the relation between b and c.

First, observe that for any player who defects switching to cooperation
is never a profitable deviation. Let us find the conditions under which the
reverse deviation is insecure.

Assume that initially A players cooperate. Consider any cooperator i,
assume that she reflects about ni other cooperators. Her defection (which is
always profitable) is a non-secure deviation if

bA

n
− c > b(A− 1− ni)

n
, and

bA

n
− c > 0,

that yields

ni > n∗ =
cn

b
− 1, A >

cn

b
.
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In particular, this means that a player reflecting about relatively small
number of agents never cooperates. Therefore, in Nash-2 equilibrium any sub-
set of players with sufficient number of links with other cooperators (more
than n∗) in the reflection network is able to cooperate while all other de-
fect if the number of cooperators is enough to provide positive profits for
cooperators.

If these profits are very small, then for cooperation we need a complete
reflection network among cooperators. However, if cooperative strategy leads
to material losses then nothing will force players to cooperate.

So, for supporting cooperative behavior it is important not only to provide
a balance between the value of individual return and the cooperation cost,
but also to ensure close contacts between cooperators, as in the civil society.

Remark 2. The examples above demonstrate how significant is to take into
account the agent reflection about possible behavior of the opponents. No
matter what considerations (spatial or some others) underlie the reflection
network, it fundamentally affects possible equilibria.

6 Conclusion

The problem that we discuss closely related to the equilibrium analysis of
rational expectations under uncertainty. Classical Bayesian approach requires
some certain information on probabilities of ”the state of the world”. The
correctness of prediction and consistency with agents’ behavior is an urgent
field for discussion. However, process of assignment of these probabilities is
often ambiguous.

Moreover, we argue that some aspects of rationality lie beyond utility
function expression, namely, in a quasi-social structure of links among non-
anonymous competitors. This factors together with initial point of consid-
eration and natural limitations of iteration thinking depth lead us to the
equilibrium concept providing multiple predictions. We assume that this
multiplicity is a natural expression of great variety of real-life agents’ behav-
ior.

One more source of uncertainty is a problem of appropriate timing because
of a lack of information on duration of interaction and intermediate moments
of updating strategies. Using n-stage games is sometimes a rather rough way
to treat such situations.

It is to be mentioned that the idea of constructing a measure on the
set of Nash-2 equilibrium seems to have some analogy with mixed-strategy
solution. But one should be very cautious with such conclusions as this
distributions have different origin. Introducing any measure of feasibility on
NE-2 essentially depends on some extra suggestions about agents’ expectation
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and decision principles and thus may be defined in various ways.
Certainly, a lot of related issues is to be clarified in the future research.

The most interesting part concerns games with many players and detecting
some patterns of reflection networks. Nevertheless, we suppose that even
simplest examples presented in this paper fully confirm that this approach is
of interest.
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